Densenet模型详解
模型介绍
DenseNet的主要思想是密集连接,它在卷积神经网络(CNN)中引入了密集块(Dense Block),在这些块中,每个层都与前面所有层直接连接。这种设计可以让信息更快速地传播,有助于解决梯度消失的问题,同时也能够增加网络的参数共享,减少参数量,提高模型的效率和性能。
Densenet原理
DenseNet 的原理可以总结为以下几个关键点:
-
密集连接的块: DenseNet 将网络分成多个密集块(Dense Block)。在每个密集块内,每一层都连接到前面所有的层,不仅仅是前一层。这种连接方式使得信息能够更加快速地传播,允许网络在更早的阶段融合不同层的特征。
-
跳跃连接: 每一层都从前面所有的层接收特征作为输入。这些输入通过堆叠而来,从而构成了一个密集的特征图。这种跳跃连接有助于解决梯度消失问题,因为每一层都可以直接访问之前层的梯度信息,使得训练更加稳定。
-
特征重用性: 由于每一层都与前面所有层连接,网络可以自动地学习到更加丰富和复杂的特征表示。这样的特征重用性有助于提高网络的性能,同时减少了需要训练的参数数量。
-
过渡层: 在密集块之间,通常会使用过渡层(Transition Layer)来控制特征图的大小。过渡层包括一个卷积层和一个池化层,用于减小特征图的尺寸,从而减少计算量。

Densenet的结构
关于 DenseNet 的结构时,我们主要关注网络中的三个主要组成部分:密集块(Dense Block)、过渡层(Transition Layer)以及全局平均池化层。
密集块
密集块是 DenseNet 最核心的部分,由若干层组成。在密集块中,每一层都与前面所有层直接连接。这种密集连接的方式使得信息可以更充分地传递和重用。每一层的输出都是前面所有层输出的连结,这也意味着每一层的输入包括了前面所有层的特征。这种连接方式通过堆叠层的方式,构建了一个密集的特征图。
过渡层
在密集块之间,可以使用过渡层来控制特征图的大小,从而减少计算成本。过渡层由一个卷积层和一个池化层组成。卷积层用于减小通道数,从而降低特征图的维度。池化层(通常是平均池化)用于减小特征图的尺寸。这些操作有助于在保持网络性能的同时降低计算需求。
全局平均池化层
在整个 DenseNet 结构的末尾,通常会添加一个全局平均池化层。这一层的作用是将最终的特征图转换为全局汇总的特征,这对于分类任务是非常有用的。全局平均池化层计算每个通道上的平均值,将每个通道转换为一个标量,从而形成最终的预测。
DenseNet 结构的特点不仅在每个密集块内进行特征的密集连接,还在不同密集块之间使用过渡层来控制网络的尺寸和复杂度。这使得 DenseNet 能够在高度复杂的任务中表现出色,同时保持相对较少的参数。
这些在论文当中也有体现:

Densenet的优缺点比较
优点
-
密集连接促进信息传递和特征重用,提升了网络性能。
-
跳跃连接减少了梯度消失,有助于训练深层网络。
-
密集连接减少参数数量,提高了模型效率。
-
早期融合多尺度特征,增强了表征能力。
-
在小样本情况下表现更佳,充分利用有限数据。
缺点
-
密集连接可能导致内存需求增大。
-
连接多导致计算量增加,训练和推理时间较长。
-
可能因复杂性导致过拟合,需考虑正则化。
其实综合考虑,Densenet在图像识别和计算机视觉任务中仍然是一个好的选择。
Pytorch实现Densenet
import torch
import torchvision
import torch.nn as nn
import torchsummary
import torch.nn.functional as F
from torch.hub import load_state_dict_from_url
from collections import OrderedDict
from torchvision.utils import _log_api_usage_once
import torch.utils.checkpoint as cpmodel_urls = {"densenet121":"https://download.pytorch.org/models/densenet121-a639ec97.pth","densenet161":"https://download.pytorch.org/models/densenet161-8d451a50.pth","densenet169":"https://download.pytorch.org/models/densenet169-b2777c0a.pth","densenet201":"https://download.pytorch.org/models/densenet201-c1103571.pth",
}
cfgs = {"densenet121":(6, 12, 24, 16),"densenet161":(6, 12, 36, 24),"densenet169":(6, 12, 32, 32),"densenet201":(6, 12, 48, 32),
}class DenseLayer(nn.Module):def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient = False):super(DenseLayer,self).__init__()self.norm1 = nn.BatchNorm2d(num_input_features)self.relu1 = nn.ReLU(inplace=True)self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)self.relu2 = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)self.drop_rate = float(drop_rate)self.memory_efficient = memory_efficientdef bn_function(self, inputs):concated_features = torch.cat(inputs, 1)bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))return bottleneck_outputdef any_requires_grad(self, input):for tensor in input:if tensor.requires_grad:return Truereturn False@torch.jit.unuseddef call_checkpoint_bottleneck(self, input):def closure(*inputs):return self.bn_function(inputs)return cp.checkpoint(closure, *input)def forward(self, input):if isinstance(input, torch.Tensor):prev_features = [input]else:prev_features = inputif self.memory_efficient and self.any_requires_grad(prev_features):if torch.jit.is_scripting():raise Exception("Memory Efficient not supported in JIT")bottleneck_output = self.call_checkpoint_bottleneck(prev_features)else:bottleneck_output = self.bn_function(prev_features)new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))if self.drop_rate > 0:new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)return new_featuresclass DenseBlock(nn.ModuleDict):def __init__(self,num_layers,num_input_features,bn_size,growth_rate,drop_rate,memory_efficient = False,):super(DenseBlock,self).__init__()for i in range(num_layers):layer = DenseLayer(num_input_features + i * growth_rate,growth_rate=growth_rate,bn_size=bn_size,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.add_module("denselayer%d" % (i + 1), layer)def forward(self, init_features):features = [init_features]for name, layer in self.items():new_features = layer(features)features.append(new_features)return torch.cat(features, 1)class Transition(nn.Sequential):"""Densenet Transition Layer:1 × 1 conv2 × 2 average pool, stride 2"""def __init__(self, num_input_features, num_output_features):super(Transition,self).__init__()self.norm = nn.BatchNorm2d(num_input_features)self.relu = nn.ReLU(inplace=True)self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)self.pool = nn.AvgPool2d(kernel_size=2, stride=2)class DenseNet(nn.Module):def __init__(self,growth_rate = 32,num_init_features = 64,block_config = None,num_classes = 1000,bn_size = 4,drop_rate = 0.,memory_efficient = False,):super(DenseNet,self).__init__()_log_api_usage_once(self)# First convolutionself.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),]))# Each denseblocknum_features = num_init_featuresfor i, num_layers in enumerate(block_config):block = DenseBlock(num_layers=num_layers,num_input_features=num_features,bn_size=bn_size,growth_rate=growth_rate,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.features.add_module("denseblock%d" % (i + 1), block)num_features = num_features + num_layers * growth_rateif i != len(block_config) - 1:trans = Transition(num_input_features=num_features, num_output_features=num_features // 2)self.features.add_module("transition%d" % (i + 1), trans)num_features = num_features // 2# Final batch normself.features.add_module("norm5", nn.BatchNorm2d(num_features))# Linear layerself.classifier = nn.Linear(num_features, num_classes)# Official init from torch repo.for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x):features = self.features(x)out = F.relu(features, inplace=True)out = F.adaptive_avg_pool2d(out, (1, 1))out = torch.flatten(out, 1)out = self.classifier(out)return outdef densenet(growth_rate=32,num_init_features=64,num_classes=1000,mode="densenet121",pretrained=False,**kwargs):import repattern = re.compile(r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$")if mode == "densenet161":growth_rate=48num_init_features=96model = DenseNet(growth_rate, num_init_features, cfgs[mode],num_classes=num_classes, **kwargs)if pretrained:state_dict = load_state_dict_from_url(model_urls[mode], model_dir='./model', progress=True) # 预训练模型地址for key in list(state_dict.keys()):res = pattern.match(key)if res:new_key = res.group(1) + res.group(2)state_dict[new_key] = state_dict[key]del state_dict[key]if num_classes != 1000:num_new_classes = num_classesweight = state_dict['classifier.weight']bias = state_dict['classifier.bias']weight_new = weight[:num_new_classes, :]bias_new = bias[:num_new_classes]state_dict['classifier.weight'] = weight_newstate_dict['classifier.bias'] = bias_newmodel.load_state_dict(state_dict)return modelfrom torchsummaryX import summaryif __name__ == "__main__":in_channels = 3num_classes = 10device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = densenet(growth_rate=32, num_init_features=64, num_classes=num_classes, mode="densenet121", pretrained=True)model = model.to(device)print(model)summary(model, torch.zeros((1, in_channels, 224, 224)).to(device))相关文章:
Densenet模型详解
模型介绍 DenseNet的主要思想是密集连接,它在卷积神经网络(CNN)中引入了密集块(Dense Block),在这些块中,每个层都与前面所有层直接连接。这种设计可以让信息更快速地传播,有助于解…...
华为eNSP模拟器中,路由器如何添加serial接口
在ensp模拟器中新建拓扑后,添加2个路由器。 在路由器图标上单击鼠标右键,选择设置选项。 在【视图】选项卡的【eNSP支持的接口卡】窗口查找serial接口卡。 选择2SA接口卡,将其拖动到路由器空置的卡槽位。 如上图所示,已经完成路由…...
Linux脚本- 执行当前文件下前500个.c文件,并将每个文件对应的执行结果重定向到同名的.ok文件中
需求:执行当前文件下前500个.c文件,并将每个文件对应的执行结果重定向到同名的.ok文件中 以下是一个用于实现该功能的 Bash 脚本。 #!/bin/bash# 计数器,用于限制处理的文件数量 counter0# 遍历当前目录下的所有 .c 文件 for c_file in *.c…...
高速公路自动驾驶汽车超车控制方法研究
目录 摘要 ............................................................................................................ I Abstract ...................................................................................................... II 目录 ...............…...
Java 多线程系列Ⅰ(创建线程+查看线程+Thread方法+线程状态)
多线程基础 一、创建线程的五种方法前置知识1、方法一:使用继承Thread类,重写run方法2、方法二:实现Runnable接口,重写run方法3、方法三:继承Thread,使用匿名内部类4、方法四:实现Runnable&…...
无入侵接口文档smart-doc
Smart-doc优点: 1.非侵入式生成接口文档 2.减少接口文档的手动更新麻烦&保证了接口文档和代码的一致 3.随时可生成最新的接口文档 4.保持团队代码风格一致:smart-doc支持javadoc,必须按照这个才能生成有注释的接口文档 最终效果 1.导入依赖 <pl…...
nacos配置超级管理员账户,只能mysql存储数据(或者其他数据库)
nacos本身是不允许授权超级管理员账号的,也就是角色名“ROLE_ADMIN”。作者在页面上试过了,不必再次尝试改的方式是直接改数据库里面的数据...
【前端自动化部署】,Devops,CI/CD
DevOps 提到Jenkins,想到的第一个概念就是 CI/CD 在这之前应该再了解一个概念。 DevOps Development 和 Operations 的组合,是一种方法论,并不特指某种技术或者工具。DevOps 是一种重视 Dev 开发人员和 Ops 运维人员之间沟通、协作的流程。…...
【C语言】探讨蕴藏在表达式求解中的因素
🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:C语言 🔥该篇将探讨 操作符 和 类型转换 对表达式求解的影响。 目录: 隐式类型转换算术转换操作符的属性❤️ 结语 隐…...
【Flutter】Flutter 使用 video_player 播放视频
【Flutter】Flutter 使用 video_player 播放视频 文章目录 一、前言二、video_player 简介三、安装和配置四、基本使用五、完整示例 六、高级功能七、总结 一、前言 大家好,我是小雨青年,今天我要和大家分享一款非常实用的 Flutter 包——video_player。…...
如何使用 ChatGPT 快速制作播客和其他长篇内容
使用ChatGPT快速制作播客和其他长篇内容是一个高效且具有一定创造性的过程。以下是一些详细的步骤和技巧,以帮助你充分利用ChatGPT来制作高质量的内容。 一、准备阶段 确定主题或话题:在开始制作之前,你需要明确你的播客或长篇内容将聚焦的主…...
JavaScript基础语法02——JS书写位置
哈喽,大家好,我是雷工! 今天继续学习JavaScript基础语法,JS的书写位置,俗话说:好记性不如烂笔头,边学边记,方便回顾。 1、行内JavaScript 代码写在标签内部 示例: <…...
LInux快捷命令
切换到行头:ctrla 或者 ctrlhome 切换到行尾:ctrale 或者 ctrlend 光标向左切换一个单词:ctrl← 光标向右切换一个单词:ctrl→ 历史命令搜索:history 历史命令匹配第一条执行:!x (x表示历史命令…...
jvm的内存划分区域
jvm划分5个区域: java虚拟机栈、本地方法栈、堆、程序计数器、方法区。 各个区各自的作用: 1.本地方法栈:用于管理本地方法的调用,里面并没有我们写的代码逻辑,其由native修饰,由 C 语言实现。 2.程序计数…...
什么是数据中心IP,优缺点是什么?
如果根据拥有者或者说发送地址来分类的话,可以将代理分为三类:数据中心ip,住宅ip,移动ip 本文我们来了解数据中心ip的原理以及他们的优势劣势,才能选择适合自己的代理。 一、什么是数据中心ip代理? 数据中心ip是由数据中心拥有…...
模块化与组件化:开发中的双剑合璧
引言:模块化与组件化的重要性 在现代软件开发中,随着项目规模的增长和技术的复杂性增加,如何有效地组织和管理代码变得越来越重要。模块化与组件化作为两种主要的代码组织方法,为开发者提供了有效的工具,帮助他们创建…...
【C++初阶】list的常见使用操作
👦个人主页:Weraphael ✍🏻作者简介:目前学习C和算法 ✈️专栏:C航路 🐋 希望大家多多支持,咱一起进步!😁 如果文章对你有帮助的话 欢迎 评论💬 点赞…...
排序之插入排序
文章目录 前言一、直接插入排序1、基本思想2、直接插入排序的代码实现3、直接插入排序总结 二、希尔排序1、希尔排序基本思想2、希尔排序的代码实现3、希尔排序时间复杂度 前言 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大…...
c# - - - 安装.net core sdk
如图,安装的是.Net Core 2.2版本 查看安装成功...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
