当前位置: 首页 > news >正文

spark支持深度学习批量推理

背景

在数据量较大的业务场景中,spark在数据处理、传统机器学习训练、
深度学习相关业务,能取得较明显的效率提升。
本篇围绕spark大数据背景下的推理,介绍一些优雅的使用方式。

spark适用场景

  1. 大数据量自定义方法处理、类sql处理
  2. 传统机器学习方法(k-means、xgboost、lr…)
  3. 分布式深度学习推理
    在这里插入图片描述

目前在10亿+数据量的推理场景中使用,需要用户自己实现批数据准备,基于RDD的方法完成模型推理输出。
业务使用中的问题:

  1. 模型文件重复导入加载
  2. 自定义批数据准备,脱离深度学习dataloader框架,操作略显麻烦,有性能和内存oom等问题。

实践

spark加速深度学习推理

spark加速深度学习推理,基本思路为:

  1. 开启不定量worker并行执行(cpu或gpu)推理任务
  2. 所有worker共享同一份模型参数
  3. 依赖spark pandas udf功能,方便并行处理 dataframe 数据
  4. 依赖深度学习框架,方便实现最优批数据划分
    下面以pytorch resnet 为实践demo

加载&&广播模型参数

广播模型参数,不仅能减少模型重复加载带来的流量和io,而且能加速推理前模型加载的速度。
driver广播模型参数:

# Load ResNet50 on driver node and broadcast its state.
model_state = models.resnet50(pretrained=True).state_dict()
bc_model_state = sc.broadcast(model_state)

worker读取模型参数:

def get_model_for_eval():"""Gets the broadcasted model."""model = models.resnet50(pretrained=True)model.load_state_dict(bc_model_state.value)model.eval()return model

实现基于dataframe的dataset

目前主流的深度学习框架,dataset的实现大多基于本地存储,在读取分布式存储的场景 需要用户自定义实现。
自定义实现有2个方法:

  1. 使用分布式存储的api接口读取文件内容
  2. dataset读取dataframe二进制文件内容

方法一迭代与使用的存储类型会保持同步,且每次使用前需要明确使用的分布式存储,虽然实现方法容易但是使用流程略显麻烦。
方法二不需要关心分布式存储类型,只要需要获取并解析spark dataframe列传入内容即可。

本文采用方法二实现dataset:

# 从二进制流中解析图片信息
def pil_loader(binary_file):# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)image_io = io.BytesIO(binary_file)img = Image.open(image_io)return img.convert('RGB')# Create a custom PyTorch dataset class.
class ImageDataset(Dataset):def __init__(self, data, transform=None):self.data = dataself.transform = transformdef __len__(self):return len(self.data)def __getitem__(self, index):image = pil_loader(self.data[index])if self.transform is not None:image = self.transform(image)return image

实现批量推理的pandas udf

Pandas udf是基于RDD的一个低门槛高性能的实现方法,pandas udf能自定义处理逻辑,以列的方式操作datafrme内容。
这是社区目前推荐的自定义处理方式。

# Define the function for model inference.
# PyArrow >= 1.0.0 must be installed;
@pandas_udf(ArrayType(FloatType()))
def predict_batch_udf(binaray_data: pd.Series) -> pd.Series:transform = transforms.Compose([transforms.Resize(224),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])images = ImageDataset(binaray_data, transform=transform)loader = torch.utils.data.DataLoader(images, batch_size=500, num_workers=8)model = get_model_for_eval()model.to(device)all_predictions = []with torch.no_grad():for batch in loader:predictions = list(model(batch.to(device)).cpu().numpy())for prediction in predictions:all_predictions.append(prediction)return pd.Series(all_predictions)
# 调用pandas udf
predictions_df = df. \select(col("filename"), predict_batch_udf(col("data")).alias("prediction"))

更多代码细节:
https://github.com/Crazybean-lwb/deeplearning-pyspark/blob/master/examples/pytorch-inference.py

模型仓加速推理

打通到模型仓mlflow功能:

  • 模型存储和版本管理
  • 便捷取用
  • 适用spark datarame更高阶的pandas udf实现

在这里插入图片描述

# Create the PySpark UDF
import mlflow.pyfunc
pyfunc_udf = mlflow.pyfunc.spark_udf(spark, model_uri=model_uri)# 调用pandas udf
df = spark_df.withColumn("prediction", pyfunc_udf(struct([...])))

参考信息:

  1. pytorch分布式批量推理
  2. tensorflow分布式批量推理
  3. 模型仓mlflow协助分布式批量推理

相关文章:

spark支持深度学习批量推理

背景 在数据量较大的业务场景中,spark在数据处理、传统机器学习训练、 深度学习相关业务,能取得较明显的效率提升。 本篇围绕spark大数据背景下的推理,介绍一些优雅的使用方式。 spark适用场景 大数据量自定义方法处理、类sql处理传统机器…...

代码随想录打卡—day52—【子序列问题】— 8.31 最大子序列

共性 做完下面三题,发现三个的dp数组中i都是以 i 为结束的字串。 1 300. 最长递增子序列 300. 最长递增子序列 AC: class Solution { public:int dp[10010]; // 表示以i结束的子序列最大的长度/*if(nums[j] > nums[i])dp[j] max(dp[j],dp[i] …...

gcc4.8.5升级到gcc4.9.2

第1步:获取repo [rootlocalhost SPECS]# wget --no-check-certificate https://copr.fedoraproject.org/coprs/rhscl/devtoolset-3/repo/epel-6/rhscl-devtoolset-3-epel-6.repo -O /etc/yum.repos.d/devtoolset-3.repo --2021-12-07 20:53:26-- https://copr.fedo…...

Golang 中的 archive/zip 包详解(三):常用函数

Golang 中的 archive/zip 包用于处理 ZIP 格式的压缩文件,提供了一系列用于创建、读取和解压缩 ZIP 格式文件的函数和类型,使用起来非常方便,本文讲解下常用函数。 zip.OpenReader 定义如下: func OpenReader(name string) (*R…...

微服务架构七种模式

微服务架构七种模式 目录概述需求: 设计思路实现思路分析 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,challenge Survive.…...

关于CICD流水线的前端项目运行错误,npm项目环境配置时出现报错:Not Found - GET https://registry.npm...

关于CICD流水线的前端项目运行错误,npm项目环境配置时出现报错:Not Found - GET https://registry.npm… 原因应该是某些jar包缓存中没有需要改变镜像将包拉下来 npm config set registry http://registry.npm.taobao.org npm install npm run build...

element-plus的周选择器 一周从周一开始

1、代码 1&#xff09;、template中 <el-date-picker v-model"value1" type"week" format"[Week] ww" placeholder"巡访周" change"change"value-format"YYYY-MM-DD" /> 2&#xff09;、方法中 import…...

Android 9.0 pms获取应用列表时过滤掉某些app功能实现

1.前言 在9.0的系统rom定制化开发中,对系统定制的功能也是很多的,在一次产品开发中,要求在第三方app获取应用列表的时候,需要过滤掉某些app,就是不显示在app应用列表中,这就需要在pms查询app列表时过滤掉这些app就可以了,接下来就实现这些功能 2.pms获取应用列表时过滤掉…...

HTML <thead> 标签

实例 带有 thead、tbody 以及 tfoot 元素的 HTML 表格: <table border="1"><thead><tr><th>Month</th><th>Savings</th></tr></thead><tfoot><tr><td>Sum</td><td>$180<…...

谷歌发布Gemini以5倍速击败GPT-4

在Covid疫情爆发之前&#xff0c;谷歌发布了MEENA模型&#xff0c;短时间内成为世界上最好的大型语言模型。谷歌发布的博客和论文非常可爱&#xff0c;因为它特别与OpenAI进行了比较。 相比于现有的最先进生成模型OpenAI GPT-2&#xff0c;MEENA的模型容量增加了1.7倍&#xf…...

力扣92. 局部反转链表

92. 反转链表 II 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&am…...

九、适配器模式

一、什么是适配器模式 适配器模式&#xff08;Adapter&#xff09;的定义如下&#xff1a;将一个类的接口转换成客户希望的另外一个接口&#xff0c;使得原本由于接口不兼容而不能一起工作的那些类能一起工作。 适配器模式&#xff08;Adapter&#xff09;包含以下主要角色&…...

使用spring自带的发布订阅来实现发布订阅

背景 公司的项目以前代码里面有存在使用spring自带发布订阅的代码&#xff0c;因此稍微学习一下如何使用&#xff0c;并了解一下这种实现方式的优缺点。 优点 实现方便&#xff0c;代码方面基本只需要定义消息体和消费者&#xff0c;适用于小型应用程序。不依赖外部中间件&a…...

Walmart电商促销活动即将开始,如何做促销活动?需要注意什么?

近日&#xff0c;沃尔玛官宣Baby Days优惠活动将于9月1日正式开始&#xff01;卖家可以把握机会&#xff0c;通过设置促销定价&#xff0c;以最优惠的婴儿相关产品价格吸引消费者&#xff0c;包括汽车座椅、婴儿车、尿布袋、家具、床上用品、消耗品、婴儿服装、孕妇装等。注意本…...

Matlab(画图进阶)

目录 大纲 1.特殊的Plots 1.1 loglog(双对数刻度图) ​1.3 plotyy(创建具有两个y轴的图形) 1.4yyaxis(创建具有两个y轴的图) 1.5 bar 3D条形图(bar3) 1.6 pie(饼图) 3D饼图 1.7 polar 2.Stairs And Ste阶梯图 3.Boxplot 箱型图和Error Bar误差条形图 3.1 boxplot 3.2 …...

人生的回忆

回忆是人类宝贵的精神财富&#xff0c;它们像一串串珍珠&#xff0c;串联起我们生活中的每一个片段。 回忆是时间的见证者&#xff0c;它们承载着我们成长、经历、悲欢离合的点点滴滴。 回忆让我们重温过去的欢笑与眼泪&#xff0c;感受那些已经逝去的时光。它们就像一本翻开的…...

Spring之依赖注入源码解析

Spring之依赖注入源码解析 Spring依赖注入的方式 手动注入 在XML中定义Bean时&#xff0c;即为手动注入&#xff0c;因为是程序员手动给某个属性指定了值。 通过set方式进行注入 <bean name"userService" class"com.luban.service.UserService">…...

5G NR:RACH流程-- Msg1之生成PRACH Preamble

随机接入流程中的Msg1&#xff0c;即在PRACH信道上发送random access preamble。涉及到两个问题&#xff1a; 一个是如何产生preamble&#xff1f;一个是如何选择正确的PRACH时频资源发送所选的preamble? 一、PRACH Preamble是什么 PRACH Preamble从数学上来讲是一个长度为…...

高基数类别特征预处理:平均数编码 | 京东云技术团队

一 前言 对于一个类别特征&#xff0c;如果这个特征的取值非常多&#xff0c;则称它为高基数&#xff08;high-cardinality&#xff09;类别特征。在深度学习场景中&#xff0c;对于类别特征我们一般采用Embedding的方式&#xff0c;通过预训练或直接训练的方式将类别特征值编…...

高效利用隧道代理实现无阻塞数据采集

在当今信息时代&#xff0c;大量的有价值数据分散于各个网站和平台。然而&#xff0c;许多网站对爬虫程序进行限制或封禁&#xff0c;使得传统方式下的数据采集变得困难重重。本文将向您介绍如何通过使用隧道代理来解决这一问题&#xff0c;并帮助您成为一名高效、顺畅的数据采…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...