工厂人员作业行为动作识别检测算法
工厂人员作业行为动作识别检测算法通过yolov7+python深度学习算法框架模型,工厂人员作业行为动作识别检测算法实时识别并分析现场人员操作动作行为是否符合SOP安全规范流程作业标准,如果不符合则立即抓拍告警提醒。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。 与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。
近年来,实时目标检测器仍在针对不同的边缘设备进行开发。例如,MCUNet 和 NanoDet 的开发专注于生产低功耗单芯片并提高边缘 CPU 的推理速度;YOLOX、YOLOR 等方法专注于提高各种 GPU 的推理速度;实时目标检测器的发展集中在高效架构的设计上;在 CPU 上使用的实时目标检测器的设计主要基于 MobileNet、ShuffleNet 或 GhostNet;为 GPU 开发的实时目标检测器则大多使用 ResNet、DarkNet 或 DLA,并使用 CSPNet 策略来优化架构。
YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。
Adapter接口定义了如下方法:
public abstract void registerDataSetObserver (DataSetObserver observer)
Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。
public abstract void unregisterDataSetObserver (DataSetObserver observer)
通过调用unregisterDataSetObserver方法,反注册观察者。
public abstract int getCount () 返回Adapter中数据的数量。
public abstract Object getItem (int position)
Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。
public abstract long getItemId (int position)
获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。
public abstract boolean hasStableIds ()
hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。
public abstract View getView (int position, View convertView, ViewGroup parent)
getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。
相关文章:

工厂人员作业行为动作识别检测算法
工厂人员作业行为动作识别检测算法通过yolov7python深度学习算法框架模型,工厂人员作业行为动作识别检测算法实时识别并分析现场人员操作动作行为是否符合SOP安全规范流程作业标准,如果不符合则立即抓拍告警提醒。Python是一种由Guido van Rossum开发的通…...

【数据结构】顺序表详解
当我们写完通讯录后,顺序表肯定难不倒你,跟着小张一起来学习顺序表吧! 线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表&#x…...

HTML 播放器效果
效果图 实现代码 <!DOCTYPE HTML> <html><head><title>爱看动漫社区 | 首页 </title><link href"css/bootstrap.css" relstylesheet typetext/css /><!-- jQuery --><script src"js/jquery-1.11.0.min.js"…...

C++常用23种设计模式总结(三)------装饰模式
往期回顾 C常用23种设计模式总结(一)------单例模式 C常用23种设计模式总结(二)------观察者模式 什么是装饰模式 装饰模式是一种结构型设计模式,它允许你在运行时为对象动态添加新的行为。该模式通过将对象放入包装器中来实现这一点,这个包装器会实现与…...

选择O型圈时要考虑哪些因素?
为您的应用选择正确的O型圈对于确保适当的密封和较佳性能至关重要。O型圈可用的材料和尺寸多种多样,做出正确的选择可能需要知道一些重要的知识点。在本文中,我们将讨论选择O型圈时需要考虑的一些关键因素。 1、材料兼容性:先要考虑的因素是…...

安全管理中心技术测评要求项
1.系统管理-通过系统管理员进行系统管理操作 1-0/2-2/3-2/4-2 a)对系统管理员进行身份鉴别,只允许其通过特定的命令或操作界面进行系统管理操作,并对这些操作进行审计 b)通过系统管理员对系统的资源和运行进行配置、控制和管理&am…...

Hibernate(Spring Data)抓取策略
文章目录 示例代码放到最后,使用的是Springboot 项目1. 简介2. Hibernate抓取策略分类2.1 即时加载(Eager Loading)2.2 延迟加载(Lazy Loading)2.3 子查询加载(Subselect Loading)2.4 基于批处理…...

【高阶数据结构】map和set的介绍和使用 {关联式容器;键值对;map和set;multimap和multiset;OJ练习}
map和set的介绍和使用 一、关联式容器 关联式容器和序列式容器是C STL中的两种不同类型的容器。 关联式容器是基于键值对的容器,其中每个元素都有一个唯一的键值,可以通过键值来访问元素。关联式容器包括set、multiset、map和multimap。 序列式容器是…...

系统架构技能之设计模式-单件模式
一、开篇 其实我本来不是打算把系统架构中的一些设计模式单独抽出来讲解的,因为很多的好朋友也比较关注这方面的内容,所以我想通过我理解及平时项目中应用到的一 些常见的设计模式,拿出来给大家做个简单讲解,我这里只是抛砖引玉,…...

Redis进阶 - JVM进程缓存
原文首更地址,阅读效果更佳! Redis进阶 - JVM进程缓存 | CoderMast编程桅杆https://www.codermast.com/database/redis/redis-advance-jvm-process-cache.html 传统缓存的问题 传统的缓存策略一般是请求到达 Tomcat 后,先查询 Redis &…...

SD-WAN带您告别高成本、单一功能和安全性差
现今,随着企业规模不断扩大和分散办公越来越普遍,企业对于网络的需求也变得越来越高。然而,传统的组网方式面临着很多的问题,比如:成本高、功能单一、安全性差等问题。 传统组网方式有哪些? 传统的组网方式…...

面试必备:揭秘ArrayList和LinkedList,区别、优缺点与使用场景
大家好,我是你们的小米!今天我要跟大家聊一个在面试中经常被问到的热门话题——ArrayList和LinkedList的区别、优缺点以及它们的使用场景。作为程序员,掌握这些知识点不仅可以在面试中脱颖而出,还能帮助我们更好地在项目中选择合适…...

【局部活动轮廓】使用水平集方法实现局部活动轮廓方法研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Git 同步远程新的同名分支
背景 因为远程分支的提交记录过多,导致本地的commit内容过大,会产生一些问题: 第一次拉取时间较长占用本地和远程的存储 原因 因为项目已有一些年头,若是每次文件提交比较大,那么占用空间就更大 解决方案 该方案…...

PingCode DevOps 团队:企业CICD流水线可能会遇到的问题及解法
CICD 流水线是指一系列自动化的构建、测试和部署步骤,用于将应用程序从开发到生产环境的过程。在 CICD 流水线中,每个步骤都是自动化的,并且在完成后会触发下一个步骤的执行。 CICD 的价值 CICD 流水线可以帮助团队更快地交付产品ÿ…...

【LeetCode题目详解】第九章 动态规划part01 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯 (day38补)
本文章代码以c为例! 一、力扣第509题:斐波那契数 题目: 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:…...

图像处理 信号处理板 设计原理图:367-基于zynq XC7Z100 FMC接口通用计算平台
基于zynq XC7Z100 FMC接口通用计算平台 一、板卡概述 板卡由SoC XC7Z100-2FFG900I芯片来完成卡主控及数字信号处理,XC7Z100内部集成了两个ARM Cortex-A9核和一个kintex 7的FPGA,通过PL端FPGA扩展FMC、光纤、IO等接口,PS端ARM扩展网络、USB、R…...

PHP中header()的七种用法
我们在实际开发中经常使用header()实现一些功能,这篇文章介绍关于header()的7中用法,需要的伙伴的开参考一下。 PHP header()的7中用法: 1、跳转页面 可以使用header()实现跳转页面功能。 header(Location:.$url); // $url 跳转页面的地址…...

臻图信息以数字孪生技术推动智慧小区数字化建设
伴随着智慧城市建设进程的加速发展,加速传统小区的管理与服务向智能化升级转型。运用智慧化的管理和服务,利用信息技术和物联网等技术手段,将传统的居住区域与智能设备相结合,实现楼宇、社区设施、服务管理的数字化、网络化、智能…...

15.CSS发光按钮的悬停特效
效果 源码 <!DOCTYPE html> <html> <head><title>CSS Modern Button</title><link rel="stylesheet" type="text/css" href="style.css"> </head> <body><a href="#" style=&quo…...

MyBatis —— 动态SQL和缓存
前言 在上一篇文章中荔枝梳理了一些特殊的SQL查询和一对多、多对一的映射关系,而在这篇文章中荔枝将会梳理有关MyBatis动态SQL和MyBatis缓存的相关知识,同时也稍微了解了有关MyBatis中借助MAVEN中的插件管理来实现逆向工程。希望对需要的小伙伴有帮助哈哈…...

恒流电路的三种设计方案
作为硬件研发工程师相信对恒流电路不会陌生,本文介绍下三种恒流电路的原理图。 三极管恒流电路 三极管恒流电路 三极管的恒流电路,主要是利用Q2三极管的基级导通电压为0.6~0.7V这个特性;当Q2三极管导通,Q1三极管基级电压被拉低而…...

QT基础 关于QT延迟
目录 QT提供延时 1.自定义延时 2.使用QElapsedTimer 3.使用事件循环 4.跨平台延时 QT提供延时 这里提供四种方法: 1、多线程程序使用QThread::sleep()或者QThread::msleep()或QThread::usleep()或QThread::wait()进行延时处理。 Sleep不会释放对象锁&#x…...

LLM - LLaMA-2 获取文本向量并计算 Cos 相似度
目录 一.引言 二.获取文本向量 1.hidden_states 与 last_hidden_states ◆ hidden_states ◆ last_hidden_states 2.LLaMA-2 获取 hidden_states ◆ model config ◆ get Embedding 三.获取向量 Cos 相似度 1.向量选择 2.Cos 相似度 3.BERT-whitening 特征白化 …...

【创建型设计模式】C#设计模式之工厂模式,以及通过反射实现动态工厂。
题目如下: 假设你正在为一家汽车制造公司编写软件。公司生产多种类型的汽车,包括轿车、SUV和卡车。每种汽车都有不同的特点和功能。请设计一个工厂模式,用于创建不同类型的汽车对象。该工厂模式应具有以下要求:工厂类名为 CarFac…...

可拖拽编辑的流程图X6
先上图 //index.html,有时候可能加载失败,那就再找一个别的cdn 或者npm下载,如果npm下载, //那么需要全局引入或者局部引入,代码里面写法也会不同,详细的可以看示例<script src"https://cdn.jsdeli…...

神经网络与卷积神经网络
全连接神经网络 概念及应用场景 全连接神经网络是一种深度学习模型,也被称为多层感知机(MLP)。它由多个神经元组成的层级结构,每个神经元都与前一层的所有神经元相连,它们之间的连接权重是可训练的。每个神经元都计算…...

《Java极简设计模式》第05章:原型模式(Prototype)
作者:冰河 星球:http://m6z.cn/6aeFbs 博客:https://binghe.gitcode.host 文章汇总:https://binghe.gitcode.host/md/all/all.html 源码地址:https://github.com/binghe001/java-simple-design-patterns/tree/master/j…...

OceanBase 4.1解读:读写兼备的DBLink让数据共享“零距离”
梁长青,OceanBase 高级研发工程师,从事 SQL 执行引擎相关工作,目前主要负责 DBLink、单机引擎优化等方面工作。 沈大川,OceanBase 高级研发工程师,从事 SQL 执行引擎相关工作,曾参与 TPC-H 项目攻坚&#x…...

STM32的HAL库的定时器使用
用HAL库老是忘记了定时器中断怎么配置,该调用哪个回调函数。今天记录一下,下次再忘了就来翻一下。 系统的时钟配置,定时器的时钟是84MHz 这里定时器时钟是84M,分频是8400后,时基就是1/10000s,即0.1ms。Per…...