当前位置: 首页 > news >正文

【Unity每日一记】WheelColider组件汽车游戏的关键

在这里插入图片描述


👨‍💻个人主页:@元宇宙-秩沅

👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅!

👨‍💻 本文由 秩沅 原创

👨‍💻 收录于专栏unity每日一记

🅰️推荐文章


⭐【软件设计师高频考点暴击】

⭐【Unityc#专题篇】之c#系统化大礼包】

⭐【unity数据持久化】数据管理类_PlayerPrfs

⭐【unity本站最全系列】unity常用API大全一篇文章足以


WheelColiderz组件汽车游戏的关键

在这里插入图片描述


文章目录

    • 🅰️推荐文章
    • WheelColiderz组件汽车游戏的关键
    • 🎶(==A==) 关键API知识
    • 🎶(==B==) 参数一览
    • 🎶(==C==) 扭矩力
    • 🎶(==D==) 阿克曼转向
    • 🎶(==E==) 汽车下压力
    • 🎶(==F==) 汽车质心
    • 🎶(==G==) 发动机相关
    • 🎶(==H==) 自动挡位变速箱
    • 🅰️系统路线学习点击跳转
  • 四最终代码
    • CarMoveContorl
    • CameraFllow
    • InputMana



🎶(A 关键API知识


API解释
motorTorque扭矩力:
brakeTorque制动扭矩:刹车
Radius碰撞器车轮半径
Wheel Damping rate车轮阻尼率
GetWorldPose(out wheelPosition, out wheelRotation);获取碰撞器当前的空间位置和空间角度。
steerAngle车轮碰撞器的转向。
GetGroundHit车轮的地面碰撞数据。
rpm当前轮轴转速(以每分钟转数为单位)。
isGrounded车轮是否在空中(只读)
WheelHit参数说明
colliderT另一个碰撞机的轮子正在撞击。
force施加在接触上的力的大小。
forwardDir滚轮指向的方向。.
forwardSlip轮胎在滚动方向上打滑。加速滑移为负,制动滑为正
normal接触点的正常。.
pointT车轮与地面之间的接触点。
sidewaysDir车轮的侧向方向。l.
sidewaysSlip侧身滑 轮胎向侧向打滑。.
rpm当前轮轴转速(以每分钟转数为单位)。(只读).

🎶(B 参数一览


在这里插入图片描述


🎶(C 扭矩力


知识百科:什么是扭矩力?
扭矩是指发动机运转时从曲轴端输出的平均力矩,俗称为发动机的“转劲”,是 发动机性能 的一个重要参数,扭矩越大,发动机输出的“劲”越大,曲轴转速的变化也越快,汽车的爬坡能力、起步速度和加速性也越好。


🎶(D 阿克曼转向


引用:阿克曼转向是一种现代汽车的转向方式,也是移动机器人的一种运动模式,在汽车转弯的时候,内外轮转过的角度不一样,内侧轮胎转弯半径小于外侧轮胎

  • 后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小
 if (horizontal > 0 ) {
//后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;} else if (horizontal < 0 ) {                                                          wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;} else {wheels[0].steerAngle =0;wheels[1].steerAngle =0;}

🎶(E 汽车下压力


知识百科: 什么是下压力
下压力是车在行进中空气在车体上下流速不一产生的,使空气的总压力指向地面从而增加车的抓地力.

速度越大,下压力越大,抓地更强,越不易翻车
在这里插入图片描述

  • 关键代码
  //-------------下压力添加-----------------//速度越大,下压力越大,抓地更强rigidbody.AddForce(-transform.up * downForceValue * rigidbody.velocity .magnitude );

🎶(F 汽车质心


知识百科:什么是质心?——质量中心
汽车制造商在设计汽车时会考虑质心的位置和重心高度,以尽可能减小质心侧偏角。 一些高性能汽车甚至会采用主动悬挂系统来控制车身侧倾,从而减小质心侧偏角,提高车辆的稳定性和操控性。


🎶(G 发动机相关


发动机功率=扭矩转速n

知识百科:说到汽车发动机,要了解几个参数。排量,功率,扭矩,转速。那么这里和参数之间的关系如何,
排量,就是发动机气缸排出气体的多少。因此说到排量,不管四缸,三缸,二缸,一缸,只要大小一样,排量就相同。
功率,单位时间内做功的多少。那么排量越大,单位时间做功就会越多,因此,排量越大,功率也会越大。
扭矩,它的单位是N·M,所以它是力运动单位距离的结果。它反应的是加速度。扭矩越大,加速能力就越强。
转速,它是单位时间内齿轮转动的圈数。齿轮转的越快,传输给轮胎的转速就越高,车子就跑的越快。
在这里插入图片描述

//汽车引擎发动机相关public void CarEnginePower(){WheelRPM();//将轮轴的转速获取// 扭矩力(发动机功率) =  功率=扭矩*转速*nmotorflaot = -enginePowerCurve.Evaluate(engineRPM) * gears[gerrsNurrentNum];float velocity = 0.0f;//发动机的转速 与 车轮转速 和 挡位比率 成比例engineRPM = Mathf.SmoothDamp(engineRPM, 1000 + Mathf.Abs (wheelsRPM) * 3.6f * (gears[gerrsNurrentNum]), ref velocity, smoothTime);print(engineRPM);VerticalContorl();    //驱动管理shifterGearsChange(); //换挡管理}//获得车轮的转速public void WheelRPM(){float sum = 0;for (int i = 0; i < 4; i++){sum += wheels[i].rpm;}//四个车轮轮轴的平均转速wheelsRPM = sum / 4;}//换挡管理public void shifterGearsChange(){if(InputManager.InputManagerment .addGears ) //如果按下E键,加挡{if(gerrsNurrentNum < gears.Length - 1  )gerrsNurrentNum++;}if(InputManager.InputManagerment.lowGears ) //如果按下Q键,减档{if (gerrsNurrentNum > 0)gerrsNurrentNum--;}}

🎶(H 自动挡位变速箱


在这里插入图片描述

不仅仅是发动机牵引着汽车去运动。是发动机跟轮胎一起控制汽车去前进,我们前面没有添加发动机,就是靠轮胎的扭矩力去控制汽车的前进

在这里插入图片描述

怎么来理解自动档位变速箱呢?当发动机。每个档位的发动机。它超过八千转的时候就要换挡了。所以当我们现在设置发动机的最大转是八千,最小转是五千,超过八千转我们就自动加档。小于了五千转,我们就自动减档。——这个最大转和最小转是模拟跑车的。

当然,判断换挡的依据不仅仅是靠超过最大的这个发动机的最大转,连同每个档位设置的那个限速作为一起判断依据。如下图所示,每个档位的限速如果超过了这个限速,并且超过了最大转速,我们就换挡。

在这里插入图片描述

//换挡管理//换挡管理public void shifterGearsChange(){switch (nowGearsType){//档位类型是手动档的时候case EChooseGreas.handMovement:if (InputManager.InputManagerment.addGears) //如果按下E键,加挡{if (gerrsNurrentNum < gears.Length - 1)gerrsNurrentNum++;}if (InputManager.InputManagerment.lowGears) //如果按下Q键,减档{if (gerrsNurrentNum > 0)gerrsNurrentNum--;}break;//档位类型是自动档的时候handMovementcase EChooseGreas.aotomutic://如果车子不在地面不会自动换档if (!IsGrounp()) return;//当发动机转速大于最高转速 并且 速度也超过了相应挡位的限速 ,数组不越界 并且不是倒车 就加档if (engineRPM > maxRPM && Km_H >= gearSpeed[gerrsNurrentNum] && gerrsNurrentNum < gears.Length - 1 && !BackCar())gerrsNurrentNum++;//当发动机小于最小转时 减档 (此时未加判断是因为就是要 更好的减速)if (engineRPM < minRPM && gerrsNurrentNum > 0)gerrsNurrentNum--;break;default:break;}

🅰️系统路线学习点击跳转


⭐【Unityc#专题篇】之c#进阶篇】

⭐【Unityc#专题篇】之c#核心篇】

⭐【Unityc#专题篇】之c#基础篇】

⭐【Unity-c#专题篇】之c#入门篇】

【Unityc#专题篇】—进阶章题单实践练习

⭐【Unityc#专题篇】—基础章题单实践练习

【Unityc#专题篇】—核心章题单实践练习


你们的点赞👍 收藏⭐ 留言📝 关注✅是我持续创作,输出优质内容的最大动力!


在这里插入图片描述


四最终代码

在这里插入图片描述

CarMoveContorl

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
//-------------------------------------
//—————————————————————————————————————
//___________项目:       ______________
//___________功能:  车轮的运动
//___________创建者:_______秩沅________
//_____________________________________
//-------------------------------------//驱动模式的选择
public enum EDriveType
{frontDrive,   //前轮驱动backDrive,    //后轮驱动allDrive      //四驱
}public class CarMoveControl : MonoBehaviour
{//-------------------------------------------//四个轮子的碰撞器public WheelCollider[] wheels ;//网格的获取public GameObject[] wheelMesh;//初始化三维向量和四元数private Vector3 wheelPosition = Vector3.zero;private Quaternion wheelRotation = Quaternion.identity;//-------------------------------------------//驱动模式选择 _默认前驱public EDriveType DriveType = EDriveType.frontDrive;//----------车辆属性特征-----------------------//车刚体public Rigidbody rigidbody;//轮半径public float radius = 0.25f;//扭矩力度public float motorflaot = 8000f;//刹车力public float brakVualue = 800000f;//速度:每小时多少公里public int Km_H;//下压力public float downForceValue = 1000f; //四个轮胎扭矩力的大小public float f_right;public float f_left;public float b_right;public float b_left;//车轮打滑参数识别public float[] slip ;//质心public Vector3 CenterMass;//一些属性的初始化private void Start(){rigidbody = GetComponent<Rigidbody>();slip = new float[4];}private void FixedUpdate(){VerticalAttribute();//车辆物理属性管理WheelsAnimation(); //车轮动画VerticalContorl(); //驱动管理HorizontalContolr(); //转向管理HandbrakControl(); //手刹管理}//车辆物理属性相关public void VerticalAttribute(){//---------------速度实时---------------//1m/s = 3.6km/hKm_H =(int)(rigidbody.velocity.magnitude * 3.6) ;Km_H = Mathf.Clamp( Km_H,0, 200 );   //油门速度为 0 到 200 Km/H之间//--------------扭矩力实时---------------//显示每个轮胎的扭矩f_right = wheels[0].motorTorque;f_left  = wheels[1].motorTorque;b_right = wheels[2].motorTorque;b_left  = wheels[3].motorTorque;//-------------下压力添加-----------------//速度越大,下压力越大,抓地更强rigidbody.AddForce(-transform.up * downForceValue * rigidbody.velocity .magnitude );//-------------质量中心同步----------------//质量中心越贴下,越不容易翻rigidbody.centerOfMass = CenterMass;}//垂直轴方向运动管理(驱动管理)public void VerticalContorl(){switch (DriveType){case EDriveType.frontDrive: //选择前驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 0; i < wheels.Length - 2; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical *(motorflaot / 2); //扭矩马力归半}}else{for (int i = 0; i < wheels.Length - 2; i++){//扭矩力度wheels[i].motorTorque = 0; }}break;case EDriveType.backDrive://选择后驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 2; i < wheels.Length; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical * (motorflaot / 2); //扭矩马力归半}}else{for (int i = 2; i < wheels.Length ; i++){//扭矩力度wheels[i].motorTorque = 0;}}break;case EDriveType.allDrive://选择四驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 0; i < wheels.Length; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical * ( motorflaot / 4 ); //扭矩马力/4}}else{for (int i = 0; i < wheels.Length; i++){//扭矩力度wheels[i].motorTorque = 0;}}break;default:break;}}//水平轴方向运动管理(转向管理)public void HorizontalContolr(){if (InputManager.InputManagerment.horizontal > 0){//后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;}else if (InputManager.InputManagerment.horizontal < 0){wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;}else{wheels[0].steerAngle = 0;wheels[1].steerAngle = 0;}}//手刹管理public void HandbrakControl(){if(InputManager.InputManagerment .handbanl ){//后轮刹车wheels[2].brakeTorque  = brakVualue;wheels[3].brakeTorque  = brakVualue;}else{wheels[2].brakeTorque = 0;wheels[3].brakeTorque = 0;}//------------刹车效果平滑度显示------------for (int i = 0; i < slip.Length; i++){WheelHit wheelhit;wheels[i].GetGroundHit(out wheelhit);slip[i] = wheelhit.forwardSlip; //轮胎在滚动方向上打滑。加速滑移为负,制动滑为正}}//车轮动画相关public  void WheelsAnimation(){for (int i = 0; i < wheels.Length ; i++){//获取当前空间的车轮位置 和 角度wheels[i].GetWorldPose(out wheelPosition, out wheelRotation);//赋值给wheelMesh[i].transform.position = wheelPosition;wheelMesh[i].transform.rotation = wheelRotation * Quaternion .AngleAxis (90,Vector3 .forward );}}
}

CameraFllow

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
//-------------------------------------
//—————————————————————————————————————
//___________项目:       ______________
//___________功能: 相机的跟随
//___________创建者:秩沅_______________
//_____________________________________
//-------------------------------------
public class CameraFllow : MonoBehaviour
{//目标物体public Transform target;private CarMoveControl Control;public int  speed;//鼠标滑轮的速度public float ScrollSpeed = 45f;//Y轴差距参数public float Ydictance = 0f; public float  Ymin = 0f;public float  Ymax  = 4f;//Z轴差距参数public float Zdictance = 4f;public float Zmin = 4f;public float Zmax = 8f;//相机看向的角度 和最終位置public float angle = -25 ;public Vector3 lookPosition;void LateUpdate(){//Z轴和Y轴的距离和鼠标滑轮联系Ydictance += Input.GetAxis("Mouse ScrollWheel") * ScrollSpeed * Time.deltaTime;//平滑效果Zdictance += Input.GetAxis("Mouse ScrollWheel") * ScrollSpeed * Time.deltaTime;//設置Y軸和x轴的滚轮滑动范围 Ydictance = Mathf.Clamp(Ydictance , Ymin ,Ymax )  ; Zdictance = Mathf.Clamp(Zdictance , Zmin, Zmax )  ;//确定好角度,四元数 * 三维向量 = 三维向量lookPosition = Quaternion.AngleAxis(angle, target .right) * -target.forward ;//更新位置transform.position = target.position + Vector3.up * Ydictance - lookPosition  * Zdictance  ;//更新角度transform.rotation = Quaternion.LookRotation(lookPosition);//实时速度Control = target.GetComponent<CarMoveControl>();speed = (int )Control.Km_H / 4;speed = Mathf.Clamp(speed,0, 55 );   //对应最大200公里每小时}
}

InputMana

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
//-------------------------------------
//—————————————————————————————————————
//___________项目:       ______________
//___________功能: 输入控制管理器
//___________创建者:秩沅_______________
//_____________________________________
//-------------------------------------
public class InputManager : MonoBehaviour
{//单例模式管理static private InputManager inputManagerment;static public InputManager InputManagerment => inputManagerment;public float horizontal;  //水平方向动力值public float vertical;    //垂直方向动力值public bool  handbanl;    //手刹动力值void Awake(){inputManagerment = this;}void Update(){//与Unity中输入管理器的值相互对应horizontal = Input.GetAxis("Horizontal");vertical = Input.GetAxis("Vertical");handbanl = Input.GetAxis("Jump")!= 0 ? true :false ; //按下空格键时就是1,否则为0}
}

相关文章:

【Unity每日一记】WheelColider组件汽车游戏的关键

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…...

项目-IM

tim-server tim-server启动类实现CommandLineRunner接口&#xff0c;重写run()方法 run()方法开启一个线程&#xff0c;创建zk持久父节点&#xff0c;创建临时顺序子节点&#xff0c;将netty-server信息写入 1.1 用户登录 1.2 gateway向认证授权中心请求token 1.3 从zookee…...

2023年口腔医疗行业研究报告

第一章 行业概况 1.1 定义 口腔医疗行业是以口腔医疗服务消费为基础&#xff0c;包含医疗及消费双重属性&#xff0c;是 为满足口腔及颌面部疾病的预防和诊疗、口腔美容等需求提供相关医疗服务的行业。 该行业的主要参与者包括口腔保健专业人员&#xff08;如牙医、口腔外科…...

1Java:JDK是什么

1Java是介于编译型语言和解释型语言之间 编译型语言&#xff1a;c c先编译成机器码&#xff0c;再执行 解释型语言&#xff1a;pytn 解释器直接加载源码运行&#xff0c;但是运行效果低 Java是将代码编译成一张字节码,优点 针对不同平台编写虚拟机&#xff0c;不同平台的虚拟…...

使用 Amazon Lambda 进行无服务器计算:云架构中的一场革命

引言 十年前,无服务器架构还像是痴人说梦。不再如此了! 有了 Amazon Lambda,我们现在可以建构和运行应用程序而不需要考虑服务器。云供应商会无缝地处理所有服务器的供应、扩展和管理。我们只需要关注代码。 这为云部署带来了前所未有的敏捷性、自动化和优化。但是,要发挥它的…...

谨慎使用Lombok的@Builder注解

现在很多程序员都习惯使用Lombok来使代码更加 “简洁”。但是使用Lombok也会造成很多问题&#xff0c;尤其Builder 有个很大的坑&#xff0c;已经见过好几次由于使用Builder注解导致默认值失效的问题&#xff0c;如果测试时没有在意这个问题&#xff0c;就很容易引发线上问题。…...

leetcode455. 分发饼干 【贪心】

题目&#xff1a; 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼干 j&#xff0c…...

4V-28V Vin,6A同步降压DCDC变换器,集成3.3V和150mA LDO——SCT2361FPBR

SCT2361是一种高效率的同步降压型DC-DC变换器&#xff0c;集成3.3V和150mA LDO。输入电压范围为4V-28V&#xff0c;输出电压可调为0.6V&#xff0c;具有3mmx3mm的小QFN封装&#xff0c;可提供连续6A的输出电流。该器件将高、低压侧功率mosfet集成&#xff0c;使导通损耗降到最低…...

Linux中的scp指令

在Linux和Unix系统中&#xff0c;scp&#xff08;Secure Copy Protocol&#xff09;是一个用于通过SSH协议进行安全文件传输的命令行实用程序。与传统的cp&#xff08;copy&#xff09;命令不同&#xff0c;scp允许用户在不同的机器之间、或同一台机器的不同位置之间传输文件或…...

剑指 Offer 11. 旋转数组的最小数字

剑指 Offer 11. 旋转数组的最小数字 二分 要注意的是&#xff0c;由于存在重复数字&#xff0c;所以初始状态可能不满足二分的性质。不满足的情况是&#xff1a;左边开始的数字和右边结束的数字相等&#xff0c;所以一开始要缩小右边界&#xff0c;让右边界的数字小于第一个数…...

Redis面试题总结

1.什么是Redis Redis 是一种基于内存的数据库对数据的读写操作都是在内存中完成&#xff0c;因此读写速度非常快&#xff0c;常用于缓存&#xff0c;消息队列、分布式锁等场景。 Redis 提供了多种数据类型来支持不同的业务场景&#xff0c;比如 String(字符串)、Hash(哈希)、…...

【Eclipse】搭建python环境;运行第一个python程序helloword

目录 0.环境 1.需准备&搭建思路 2.搭建具体步骤 1&#xff09;查看是否安装过python 2&#xff09;安装eclipse 3&#xff09;安装和配置pyDev 3.创建第一个python程序具体步骤 1&#xff09;新建项目 2&#xff09;输入项目名字&#xff0c;和配置选项 3&#x…...

OpenAI 发布企业版ChatGPT-4

OpenAI 发布企业版ChatGPT-4 ChatGPT Enterprise 版本功能ChatGPT Enterprise 对比ChatGPT Enterprise 不同点未来发布计划OpenAI 发布企业版ChatGPT-4 OpenAI 宣布,鉴于ChatGPT的爆炸性成果,推出了针对企业的 ChatGPT Enterprise 版 ChatGPT Enterprise 版本功能 包含所有…...

Flowable7 设计器

1、flowable7 已经在主版本上移除了Flowable UI相关的包&#xff0c;包含bpm-json相关的所有包和流程设计器相关前端文件。 2、flowable7 版本目前只保留了xml运行相关的包&#xff0c;ui modeler已经移除 3、目前官方给的回复是只能在 flowable 云产品上使用设计器&#xff…...

Flutter问题记录 - Unable to find bundled Java version

新版本的Android Studio真的移除了JRE&#xff0c;jre目录找不到&#xff0c;怪不得报错了&#xff0c;不过多了一个jbr目录&#xff0c;找了个以前的Android Studio版本对比 搜了一下jbr&#xff08;JetBrains Runtime&#xff09;&#xff0c;原来IDEA老早就开始用了&#xf…...

Tomcat 日志乱码问题解决

我就是三井&#xff0c;一个永不放弃希望的男人。——《灌篮高手》 Tomcat 日志乱码问题解决 乱码原因&#xff1a;字符编码不一致 如&#xff1a;国内电脑一般都是GBK编码&#xff0c;而Tomcat日志使用的是UTF-8编码 解决方法&#xff1a;将对应字符编码由 UTF-8 改为 GBK 即…...

yum源以及rpm安装包配置、yum源冲突、yum-config-manager命令找不到、curl: (35)、docker镜像重复拉取失败

yum源配置并解决冲突、curl: (35&#xff09;、docker镜像重复拉取失败、yum-config-manager命令找不到的解决方法 有的时候按照教程走&#xff0c;可能会设置yum源&#xff0c;设置后用yum下载东西很有可能或造成冲突 yum源冲突的解决方式无非有两种&#xff1a;1. 删除冲突软…...

ChatGPT和文心一言的优缺点比较

ChatGPT和文心一言都是自然语言生成技术的代表&#xff0c;下面是它们的优缺点比较&#xff1a; ChatGPT的优点&#xff1a; 自由度高&#xff1a;ChatGPT生成的文本与给定的话题没有紧密的关联&#xff0c;可以灵活地生成多种不同的文本。多样性高&#xff1a;ChatGPT可以生…...

⛳ 面试题-单例模式会存在线程安全问题吗?

&#x1f38d;目录 ⛳ 面试题-单例模式会存在线程安全问题吗&#xff1f;&#x1f3a8; 一、单例模式-简介&#x1f69c; 二、饿汉式&#x1f43e; 三、懒汉式&#x1f3af; 3.1、懒汉式&#xff1a;在调用 getInstance 的时候才创建对象。&#xff08;线程不安全&#xff09;&…...

C - 滑动窗口 /【模板】单调队列

Description 有一个长为 n 的序列 a&#xff0c;以及一个大小为 k 的窗口。现在这个从左边开始向右滑动&#xff0c;每次滑动一个单位&#xff0c;求出每次滑动后窗口中的最大值和最小值。 例如&#xff1a; The array is [1,3,−1,−3,5,3,6,7] and k3。 Input 输入一共有…...

工厂人员作业行为动作识别检测算法

工厂人员作业行为动作识别检测算法通过yolov7python深度学习算法框架模型&#xff0c;工厂人员作业行为动作识别检测算法实时识别并分析现场人员操作动作行为是否符合SOP安全规范流程作业标准&#xff0c;如果不符合则立即抓拍告警提醒。Python是一种由Guido van Rossum开发的通…...

【数据结构】顺序表详解

当我们写完通讯录后&#xff0c;顺序表肯定难不倒你&#xff0c;跟着小张一起来学习顺序表吧&#xff01; 线性表 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构&#xff0c;常见的线性表&#x…...

HTML 播放器效果

效果图 实现代码 <!DOCTYPE HTML> <html><head><title>爱看动漫社区 | 首页 </title><link href"css/bootstrap.css" relstylesheet typetext/css /><!-- jQuery --><script src"js/jquery-1.11.0.min.js"…...

C++常用23种设计模式总结(三)------装饰模式

往期回顾 C常用23种设计模式总结(一)------单例模式 C常用23种设计模式总结(二)------观察者模式 什么是装饰模式 装饰模式是一种结构型设计模式&#xff0c;它允许你在运行时为对象动态添加新的行为。该模式通过将对象放入包装器中来实现这一点&#xff0c;这个包装器会实现与…...

选择O型圈时要考虑哪些因素?

为您的应用选择正确的O型圈对于确保适当的密封和较佳性能至关重要。O型圈可用的材料和尺寸多种多样&#xff0c;做出正确的选择可能需要知道一些重要的知识点。在本文中&#xff0c;我们将讨论选择O型圈时需要考虑的一些关键因素。 1、材料兼容性&#xff1a;先要考虑的因素是…...

安全管理中心技术测评要求项

1.系统管理-通过系统管理员进行系统管理操作 1-0/2-2/3-2/4-2 a&#xff09;对系统管理员进行身份鉴别&#xff0c;只允许其通过特定的命令或操作界面进行系统管理操作&#xff0c;并对这些操作进行审计 b&#xff09;通过系统管理员对系统的资源和运行进行配置、控制和管理&am…...

Hibernate(Spring Data)抓取策略

文章目录 示例代码放到最后&#xff0c;使用的是Springboot 项目1. 简介2. Hibernate抓取策略分类2.1 即时加载&#xff08;Eager Loading&#xff09;2.2 延迟加载&#xff08;Lazy Loading&#xff09;2.3 子查询加载&#xff08;Subselect Loading&#xff09;2.4 基于批处理…...

【高阶数据结构】map和set的介绍和使用 {关联式容器;键值对;map和set;multimap和multiset;OJ练习}

map和set的介绍和使用 一、关联式容器 关联式容器和序列式容器是C STL中的两种不同类型的容器。 关联式容器是基于键值对的容器&#xff0c;其中每个元素都有一个唯一的键值&#xff0c;可以通过键值来访问元素。关联式容器包括set、multiset、map和multimap。 序列式容器是…...

系统架构技能之设计模式-单件模式

一、开篇 其实我本来不是打算把系统架构中的一些设计模式单独抽出来讲解的&#xff0c;因为很多的好朋友也比较关注这方面的内容&#xff0c;所以我想通过我理解及平时项目中应用到的一 些常见的设计模式,拿出来给大家做个简单讲解&#xff0c;我这里只是抛砖引玉&#xff0c…...

Redis进阶 - JVM进程缓存

原文首更地址&#xff0c;阅读效果更佳&#xff01; Redis进阶 - JVM进程缓存 | CoderMast编程桅杆https://www.codermast.com/database/redis/redis-advance-jvm-process-cache.html 传统缓存的问题 传统的缓存策略一般是请求到达 Tomcat 后&#xff0c;先查询 Redis &…...