当前位置: 首页 > news >正文

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像...

原文链接:http://tecdat.cn/?p=24346

在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上点击文末“阅读原文”获取完整代码数据)。

“用户就是上帝”促使众多的企业不惜代价去争夺尽可能多的客户。但是企业在不惜代价发展新用户的过程中,往往会忽视或无暇顾及已有客户的流失情况,结果就导致出现这样一种窘况:一边是新客户在源源不断地增加,而另一方面是辛辛苦苦找来的客户却在悄然无声地流失。因此对老用户的流失进行数据分析从而挖掘出重要信息帮助企业决策者采取措施来减少用户流失的事情至关重要,迫在眉睫。

2ab43fe03656a15cb2e464bf0a40e41c.png

1.2 目的:

深入了解用户画像及行为偏好,挖掘出影响用户流失的关键因素,并通过算法预测客户访问的转化结果,从而更好地完善产品设计、提升用户体验。

相关视频

1.3 数据说明:

此次数据是携程用户一周的访问数据,为保护客户隐私,已经将数据经过了脱敏,和实际商品的订单量、浏览量、转化率等有一些差距,不影响问题的可解性。

2 读取数据

# 显示全部特征
df.head()

6609a87eb5af58843e5980d9814006ee.png

 3 切分数据

# 划分训练集,测试集
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=666)

3.1 理解数据

可以看到变量比较的多,先进行分类,除去目标变量label,此数据集的字段可以分成三个类别:订单相关指标、客户行为相关指标、酒店相关指标。

1a250c0433b5a8348020e38a5fd17385.png

bdab35d291b99f5a8abb13702d5c8034.png

4 特征工程

# 用训练集进行数据探索
train = pd.concat(\[X\_train,y\_train\],axis=1)

9ce84572084e8ce0d3ec8cf9bfb994e2.png

4.1 数据预处理

f89b8cc4ec82dddeb0d21f669ee13c42.png

915dd517b6c0bab2a066459be1e4246c.png

4.1.1 删除不必要的列

X_train.pop("sampleid")
X_test.pop("sampleid")
train.pop("sampleid")

72f4cd08c76b2f179f54d5346c180f23.png

4.1.2 数据类型转换

字符串类型的特征需要处理成数值型才能建模,将arrival和d相减得到"提前预定的天数",作为新的特征

# 增加列
# 将两个日期变量由字符串转换为日期格式类型
train\["arrial"\] = pd.to_datimetain\["arrval"\])
X\_tst\["arival"\] = d.to\_daetime(X_est\["arival"\])
# 生成提前预定时间列(衍生变量)
X\_trin\["day\_adanced"\] = (X_rain\["arival"\]-Xtrain\["d"\]).dt.days## 删除列
X_tran.dro(columns="d","arrivl"\],inpace=True)

4.1.3 缺失值的变量生成一个指示哑变量

zsl = tain.isnll().sum()\[tain.isnll(.sum()!=0\].inex

4.1.4 根据业务经验填补空缺值 

ordernum_oneyear 用户年订单数为0 ,lasthtlordergap 11%用600000填充 88%用600000填充 一年内距离上次下单时长,ordercanncelednum 用0填充 用户一年内取消订单数,ordercanceledprecent 用0t填充 用户一年内取消订
单率 242114 242114 -为空 有2种情况 1:新用户未下订单的空-88.42% 214097 2.老用户1年以上未消费的空 增加编码列未下订单新用户和 1年未下订单的老用户
price\_sensitive -0 ,中位数填充 价格敏感指数,consuming\_capacity -0 中位数填充 消费能力指数 226108 -为空情况 1.从未下过单的新用户214097 2.12011个人为空原因暂不明确
uv\_pre -24小时历史浏览次数最多酒店历史uv. cr\_pre -0,中位数填充 -24小时历史浏览次数最多酒店历史cr -0,中位数填充 29397 -为空 1.用户当天未登录APP 28633 2.刚上线的新酒店178 586 无uv,cr记录 编码添加 该APP刚上线的新酒店 764 29397
customereval_pre2 用0填充-24小时历史浏览酒店客户评分均值, landhalfhours -24小时内登陆时长 -用0填充28633 -为空:用户当天未登录APP 28633
hotelcr ,hoteluv -中位数填充 797

刚上新酒店 60 #未登录APP 118

avgprice 0 填充一部分价格填充为0 近一年未下过订单的人数,cr 用0填充,

tkq = \["hstoryvsit\_7ordernm","historyviit\_visit\_detaipagenum","frstorder\_b","historyvi
# tbkq = \["hitoryvsit\_7dernum","hisryvisit\_isit_detailagenum"\]X_train\[i\].fillna(0,inplace=True)
## 一部分用0填充,一部分用中位數填充
# 新用戶影響的相關屬性:ic\_sniti,cosuing\_cacity
n\_l = picesensitive","onsmng\_cpacty"\]
fori in n_l
X\_trini\]\[Xra\[X\_trinnew_ser==1\].idex\]=0
X\_est\[i\]\[X\_test\[X\_test.nw\_user==1\].inex\]=0

4.1.5 异常值处理

将customer\_value\_profit、ctrip_profits中的负值按0处理
将delta\_price1、delta\_price2、lowestprice中的负值按中位数处理

for f in flter_two:
a = X_trin\[\].median()
X\_tran\[f\]\[X\_train\[f\]<0\]=a
X\_test\[f\]\[X\_est\[\]<0\]=a
tran\[f\]\[train\[f\]<0\]=a

4.1.6 缺失值填充

趋于正态分布的字段,使用均值填充:businessrate\_pre2、cancelrate\_pre、businessrate_pre;偏态分布的字段,使用中位数填充.

def na_ill(df):
for col in df.clumns:
mean = X_trai\[col\].mean()dfcol\]=df\[col\].fillna(median)
return
## 衍生变量年成交率
X\_train\["onear\_dalate"\]=\_tain\["odernum\_onyear"\]/X\_tran"visinum\_onyar"\]
X\_st\["onyardealae"\]=X\_st\["orernum_neyear"\]/Xtest\[visitumonyear"\]
X_al =pd.nca(\[Xtin,Xtes)
#决策树检验dt = Decsionr(random_state=666)pre= dt.prdict(X_test)
pre\_rob = dt.preicproa(X\_test)\[:,1\]
pre_ob

d606deb399868599130980dd54c34ff6.png

4.2 数据标准化

scaler = MinMacaer()#决策树检验
dt = DeonTreasifi(random_state=666)

5 特征筛选

5.1 特征选择-删除30%列

X\_test = X\_test.iloc\[:,sp.get_spport()\]
#决策树检验
dt = DecisonreeClssifie(random_state=666)
dt.fit(X\_trin,y\_tain)
dt.score(X\_tst,y\_est)
pre = dt.pdict(X_test)
pe\_rob = dt.redicproba(X\_test)\[:,1\]
pr_robuc(pr,tpr)

142c56c54decf736331a8c7fb620b6b1.png

5.2 共线性/数据相关性

#共线性--严重共线性0.9以上,合并或删除
d = Xtrai.crr()
d\[d<0.9\]=0 #赋值显示高相关的变量
pl.fufsiz=15,15,dpi200)
ssheatp(d)

8a6272dd3fd8a40338b2eadcaa8474ce.png

6 建模与模型评估

6.1 逻辑回归

y\_prob = lr.preictproba(X\_test)\[:,1\]
y\_pred = lr.predict(X\_test
fpr\_lr,pr\_lr,teshold\_lr = metris.roc\_curve(y\_test,y\_prob)
ac\_lr = metrcs.aucfpr\_lr,tpr_lr)
score\_lr = metrics.accuracy\_score(y\_est,y\_pred)
prnt("模准确率为:{0},AUC得分为{1}".fomat(score\_lr,auc\_lr))
prit("="*30

e3ed894f2265b12ea05d9bf247f8e719.png

6.2 朴素贝叶斯

gnb = GasinNB() # 实例化一个LR模型
gnb.fi(trai,ytran) # 训练模型
y\_prob = gn.pic\_proba(X_test)\[:,1\] # 预测1类的概率
y\_pred = gnb.preict(X\_est) # 模型对测试集的预测结果
fpr\_gnb,tprgnbtreshold\_gb = metrics.roc\_crve(ytesty\_pob) # 获取真阳率、伪阳率、阈值
aucgnb = meic.aucf\_gnb,tr\_gnb) # AUC得分
scoe\_gnb = merics.acuray\_score(y\_tes,y\_pred) # 模型准确率

66c1a454f9574a9439abd7fa291180a7.png

6.3 支持向量机

s =SVkernel='f',C=,max_ter=10,randomstate=66).fit(Xtrain,ytrain)
y\_rob = sc.decsion\_untio(X_st) # 决策边界距离
y\_ed =vc.redit(X\_test) # 模型对测试集的预测结果
fpr\_sv,tpr\_vc,theshld\_sv = mtris.rc\_urv(y\_esty\_pob) # 获取真阳率、伪阳率、阈值
au\_vc = etics.ac(fpr\_sc,tpr_sv) # 模型准确率
scre\_sv = metrics.ccuracy\_sore(_tst,ypre)

b52b6b1ab9f427faaaf991674c1e90c5.png

6.4 决策树

dtc.fit(X\_tran,\_raiproba(X_test)\[:,1\] # 预测1类的概率
y\_pred = dtc.predct(X\_test # 模型对测试集的预测结果
fpr\_dtc,pr\_dtc,thresod\_dtc= metrcs.roc\_curvey_test,yprob) # 获取真阳率、伪阳率、阈值

c6079e1d5ff6a266ca608a4d56558136.png

6.5 随机森林

c = RndoForetlassiir(rand_stat=666) # 建立随机森
rfc.it(X_tain,ytrain) # 训练随机森林模型
y\_rob = rfc.redict\_poa(X_test)\[:,1\] # 预测1类的概率
y\_pedf.pedic(\_test) # 模型对测试集的预测结果
fpr\_rfc,tp\_rfc,hreshol\_rfc = metrcs.roc\_curve(y\_test,\_prob) # 获取真阳率、伪阳率、阈值
au\_fc = meris.auc(pr\_rfctpr_fc) # AUC得分
scre\_rf = metrcs.accurac\_scor(y\_tes,y\_ped) # 模型准确率

5373a420cf9682869190a9758e35d67a.png

6.6 XGboost

# 读训练数据集和测试集
dtainxgbatrx(X_rai,yrain)
dtest=g.DMrx(Xtest
# 设置xgboost建模参数
paras{'booser':'gbtee','objective': 'binay:ogistic','evlmetric': 'auc'# 训练模型
watchlst = (dtain,'trai)
bs=xgb.ran(arams,dtain,n\_boost\_round=500eva=watchlst)
# 输入预测为正类的概率值
y_prob=bst.redict(dtet)
# 设置阈值为0.5,得到测试集的预测结果
y\_pred = (y\_prob >= 0.5)*1
# 获取真阳率、伪阳率、阈值
fpr\_xg,tpr\_xgb,heshold\_xgb = metricsroc\_curv(test,y_prob)
aucxgb= metics.uc(fpr\_gb,tpr\_xgb # AUC得分
score\_gb = metricsaccurac\_sore(y\_test,y\_pred) # 模型准确率
print('模型准确率为:{0},AUC得分为:{1}'.format(score\_xgb,auc\_xgb))

c96500f2c29618d98b14bd90b2216508.png

6.7 模型比较

plt.xlabel('伪阳率')
plt.ylabel('真阳率')
plt.title('ROC曲线')
plt.savefig('模型比较图.jpg',dpi=400, bbox_inches='tight')
plt.show()

9317dfb16e9b3a14c90154d76d4362f4.png


点击标题查阅往期内容

68892b219350e75dc8dba33a58b39be0.jpeg

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

outside_default.png

左右滑动查看更多

outside_default.png

01

f6a2c9de00e5f3762e9f4ee13c5a4013.png

02

a365d698e3fe261a130ad5460ec14e80.png

03

56b288aeb5be228b3151622965e0167f.png

04

a776627dd11f345275790d4c8232027b.png

6.8 重要特征

ea = pd.Sries(dct(list((X\_trclumsfc.eatre\_imortancs_))))
ea.srt_vlues(acedig=False
fea\_s = (fa.srt\_vauesacnding=alse)).idex

801186b4ccccef6fafd6c2a464a3e103.png

77dc9ac7f011811021699d0d886b1a10.png

6.9 流失原因分析

  • cityuvs和cityorders值较小时用户流失显著高于平均水平,说明携程平台小城市的酒店信息缺乏,用户转向使用小城市酒店信息较全的竞品导致用户流失

  • 访问时间点在7点-19点用户流失比例高与平均水平:工作日推送应该避开这些时间点

  • 酒店商务属性指数在0.3-0.9区间内用户流失大于平均水平,且呈现递增趋势,说明平台商务指数高的酒店和用户期望有差距(价格太高或其他原因?), 商务属性低的用户流失较少

  • 一年内距离上次下单时长越短流失越严重,受携程2015年5月-2016年1月爆出的负面新闻影响较大,企业应该更加加强自身管理,树立良好社会形象

  • 消费能力指数偏低(10-40)的用户流失较严重,这部分用户占比50%应该引起重视

  • 价格敏感指数(5-25)的人群流失高于平均水平,注重酒店品质

  • 用户转化率,用户年订单数,近1年用户历史订单数越高,24小时内否访问订单填写页的人群比例越大流失越严重,需要做好用户下单后的追踪体验, 邀请填写入住体验,整理意见作出改进

  • 提前预定天数越短流失越严重用户一年内取消订单数越高流失越严重

6.10 建议:

4cf35444d8a110c0579a63b6f22bdbb0.png

  • 考虑占取三四线城市和低端酒店范围的市场份额

  • 用户易受企业负面新闻影响,建议企业勇于承担社会责任,加强自身管理,提高公关新闻处理时效性,树立品牌良好形像

  • 在节假日前2-3周开始热门景点酒店推送

  • 做好酒店下单后的追踪体验,邀请填写入住体验,并整理用户意见作出改进

7 客户画像

7.1 建模用户分类

# 用户画像特征
user\_feature = \["decisiohabit\_user,'starprefer','lastpvgap','sid',
'lernum",'historyvisit\_visit\_detaipagenum',
"onyear_dealrat
\]
# 流失影响特征
fea_lis = \["cityuvs",
"cityorders",
"h",
"businessrate_pre2"# 数据标准化 Kmeans方法对正态分布数据处理效果更好
scaler = StanardScalr()
lo\_atribues = pdDatarame(scr.fittransfrm(all\_cte),columns=all_ce.coluns)# 建模分类
Kmens=Means(n\_cluste=2,rndom\_state=0) #333
Keans.fi(lot_attributes # 训练模型
k\_char=Kmenscluster\_centers_ # 得到每个分类
plt.figure(figsize=(5,10))

02417de7f3640cac21902dacbfe424b6.png

9ad34cd2266aa0612fbf3be9a71f6b9a.png

7.2 用户类型占比

types=\['高价值用户','潜力用户'\]
ax.pie\[1\], raius=0.,colors='w')
plt.savefig(用户画像.jpg'dpi=400, box_inchs='tigh')

657195cfb843681ab4ba9db2bcaa8a3a.png

7.3 高价值用户分析

占比19.02,访问频率和预定频率都较高,消费水平高,客户价值大,追求高品质,对酒店星级要求高,客户群体多集中在老客户中,
建议:
多推荐口碑好、性价比高的商务酒店连锁酒店房源吸引用户;
在非工作日的11点、17点等日间流量小高峰时段进行消息推送。
为客户提供更多差旅地酒店信息;
增加客户流失成本:会员积分制,推出会员打折卡

7.4 潜力用户分析

占比:80.98% 访问频率和预定频率都较低,消费水平较低,对酒店星级要求不高,客户群体多集中在新客户中,客户价值待挖掘 建议:
因为新用户居多,属于潜在客户,建议把握用户初期体验(如初期消费有优惠、打卡活动等),还可以定期推送实惠的酒店给此类用户,以培养用户消费惯性为主;
推送的内容应多为大减价、大酬宾、跳楼价之类的;
由于这部分用户占比较多,可结合该群体流失情况分析流失客户因素,进行该群体市场的开拓,进一步进行下沉分析,开拓新的时长。


关于作者

Lijie Zhang逻辑思辨能力强,考虑问题全面,熟练掌握数据清洗和数据预处理、绘图和可视化展示,熟悉机器学习 sklearn, xgboost 等库进行数据挖掘和数据建模,掌握机器学习的线性回归、逻辑回归、主成分分析、聚类、决策树、随机森林、 xgboost、 svm、神经网络算法。


b7f67c6169a72947fbc239ade27c99ae.png

本文摘选PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像,点击“阅读原文”获取全文完整资料。

bfbd2ef0948811e05aaa1674e3870d0d.jpeg

3050d34de3163d8efcb6e451287f3896.png

点击标题查阅往期内容

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化

R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

R语言基于树的方法:决策树,随机森林,Bagging,增强树

R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测

spss modeler用决策树神经网络预测ST的股票

R语言中使用线性模型、回归决策树自动组合特征因子水平

R语言中自编基尼系数的CART回归决策树的实现

R语言用rle,svm和rpart决策树进行时间序列预测

python在Scikit-learn中用决策树和随机森林预测NBA获胜者

python中使用scikit-learn和pandas决策树进行iris鸢尾花数据分类建模和交叉验证

R语言里的非线性模型:多项式回归、局部样条、平滑样条、 广义相加模型GAM分析

R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类

R语言ISLR工资数据进行多项式回归和样条回归分析

R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型

R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量

R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测

R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

如何用R语言在机器学习中建立集成模型?

R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

在python 深度学习Keras中计算神经网络集成模型

R语言ARIMA集成模型预测时间序列分析

R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

R语言基于树的方法:决策树,随机森林,Bagging,增强树

R语言基于Bootstrap的线性回归预测置信区间估计方法

R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间

R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

Matlab建立SVM,KNN和朴素贝叶斯模型分类绘制ROC曲线

matlab使用分位数随机森林(QRF)回归树检测异常值

f2b1f740645e3b0878346ac3f45b9a8c.png

dfe04d25216b3aa0063333739a6421a6.jpeg

dfb42784be8df44816e266a6d9dc51ff.png

相关文章:

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像...

原文链接&#xff1a;http://tecdat.cn/?p24346 在今天产品高度同质化的品牌营销阶段&#xff0c;企业与企业之间的竞争集中地体现在对客户的争夺上&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 “用户就是上帝”促使众多的企业不惜代价去争夺尽可能多的客…...

详解IP协议

在介绍IP协议之前&#xff0c;先抛出一个概念&#xff1a;IP地址的作用——定位主机&#xff0c;具有将数据从主机A跨网络传输到主机B的能力&#xff0c;有了TCP提供的策略&#xff0c;例如滑动窗口、拥塞控制等&#xff0c;IP去执行它&#xff0c;所以我们通常叫TCP/IP协议&am…...

Stream流式编程用例

Stream流式编程用例&#xff1a; filter, map, flatmap, limit, skip, sort, distinct, collect, reduce, summary statistics public class StreamTest {public static void main(String[] args) {//filterStream<Integer> stream Stream.of(1, 2, 3, 4, 5);Stream&l…...

【Pytorch笔记】1. tensor的创建

参考视频&#xff1a; 深度之眼官方账号&#xff1a;01-02-张量简介与创建 torch.tensor() b torch.tensor(data, dtypeNone, deviceNone, requires_gradFalse, pin_memoryFalse)data&#xff1a;创建的tensor的数据来源&#xff0c;可以是list或numpy dtype&#xff1a;数据…...

Maven 基础之安装和命令行使用

Maven 的安装和命令行使用 1. 下载安装 下载解压 maven 压缩包&#xff08;http://maven.apache.org/&#xff09; 配置环境变量 前提&#xff1a;需要安装 java 。 在命令行执行如下命令&#xff1a; mvn --version如出现类似如下结果&#xff0c;则证明 maven 安装正确…...

运动耳机需要具备哪些功能、挂耳式运动蓝牙耳机推荐

作为运动爱好者&#xff0c;长时间的运动很容易枯燥&#xff0c;所以我会选择佩戴耳机来缓解运动的枯燥感&#xff0c;一款好的运动耳机可以让运动变得更加激情&#xff0c;还可以更好的享受运动的乐趣。 但现在的运动耳机产品实在是五花八门&#xff0c;到底什么样的运动蓝牙耳…...

【MCU】SD NAND芯片之国产新选择

文章目录 前言传统SD卡和可贴片SD卡传统SD卡可贴片SD卡 实际使用总结 前言 随着目前时代的快速发展&#xff0c;即使是使用MCU的项目上也经常有大数据存储的需求。可以看到经常有小伙伴这样提问&#xff1a; 大家好&#xff0c;请问有没有SD卡芯片&#xff0c;可以直接焊接到P…...

java 多线程

01.多线程类java.lang.Thread 这里继承Thread类的方法是比较常用的一种&#xff0c;如果说你只是想起一条线程。没有什么其它特殊的要求&#xff0c;那么可以使用Thread.&#xff08;笔者推荐使用Runable&#xff0c;后头会说明为什么&#xff09;。下面来看一个简单的实例&…...

ConsoleApplication17_2项目免杀(Fiber+VEH Hook Load)

加载方式FiberVEH Hook Load Fiber是纤程免杀&#xff0c;VEH是异常报错&#xff0c;hook使用detours来hook VirtualAlloc和sleep&#xff0c;通过异常报错调用实现主动hook 纤程Fiber的概念&#xff1a;纤程是比线程的更小的一个运行单位。可以把一个线程拆分成多个纤程&#…...

【Vue3 知识第五讲】条件渲染、列表渲染知识详解

文章目录 一、条件渲染1.1 概述1.2 演示代码 二、列表渲染2.1 使用 指令 v-for 遍历数组2.2 **使用 指令 v-for 遍历对象** 十、案例作业十一、总结 在前端开发过程中&#xff0c;条件和循环是经常被用到的逻辑。vue中封装了自己的组件渲染指令&#xff0c;可以更加方便的帮助开…...

vite+vue3从0开始搭建一个后管项目【学习随记二】

创建项目安装插件可以去【学习随记一】看下 1.路由配置 **文件路径是router/index.ts** import { createRouter, createWebHistory } from vue-router import { UserStore, userMenu } from /pinia import routes from ./routes import MainRouter from ./MainRouterconst ro…...

Linux的内存理解

建议 Mysql机器 尽量不要硬swap,如果是ssd磁盘还好。Free命令 free 命令显示系统内存的使用情况,包括物理内存、交换内存(swap)和内核缓冲区内存 输出简介: Mem 行(第二行)是内存的使用情况。Swap 行(第三行)是交换空间的使用情况。total 列显示系统总的可用物理内存和交换…...

财务数据分析?奥威BI数据可视化工具很擅长

BI数据可视化工具通常是可以用户各行各业&#xff0c;用于不同主题的数据可视化分析&#xff0c;但面对财务数据分析这块难啃的骨头&#xff0c;能够好好地完成的&#xff0c;还真不多。接下来要介绍的这款BI数据可视化工具不仅拥有内存行列计算模型这样的智能财务指标计算功能…...

趣味微项目:玩转Python编程,轻松学习快乐成长!

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 在学习Python编程的旅程…...

总结安卓Preference使用过程中注意的问题

近期在做新项目中接触到了Preference&#xff0c;这是一种用户界面元素&#xff0c;用于存储和展示应用程序的各种设置和用户偏好。该控件几年前google就已经发布了只是一直没机会应用&#xff0c;其实用起来还是挺方便的&#xff0c;使用过程中遇到了几个问题在此记录下。 1、…...

Laf 中大猫谱:让每一只流浪猫都有家

猫谱简介 中大猫谱是一款辅助校园流浪猫救助的开源小程序项目&#xff0c;服务端使用 Laf 云开发。 猫谱主要功能包括&#xff1a;猫咪信息登记、照片分享、拍照识猫、公告和留言等。项目创立的初衷&#xff0c;是解决校园猫猫交流群里的一个常见问题&#xff1a;问猫猫是谁。…...

uniapp 使用mqtt 报错 socketTask onOpen is not a function

1. 报错的解决方法 在man.js文件添加这个 // #ifndef MP // 处理 wx.connectSocket promisify 兼容问题&#xff0c;强制返回 SocketTask uni.connectSocket (function(connectSocket) {return function(options) {console.log(options)options.success options.success ||…...

Docker部署RustDesk Server 设置开机自启

三、Docker安装 Docker官方和国内daocloud都提供了一键安装的脚本&#xff0c;使得Docker的安装更加便捷。 官方的一键安装方式&#xff1a; curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 国内 daocloud一键安装命令&#xff1a; curl -sSL https://…...

ESLint如何在vue3项目中配置和使用

目录 问题描述&#xff1a; 配置&#xff1a; 注意&#xff1a; 问题描述&#xff1a; 在用vite创建vue3项目时已经选择了添加ESLint&#xff0c;创建完成后使用 pnpm install命令&#xff08;或者npm i&#xff09;安装了项目依赖之后&#xff0c;ESLint在项目中需要怎样配…...

Frida-hook:微信数据库的破解

Frida-hook:微信数据库的破解 Frida-hook:微信数据库的破解1. 准备条件2. 用frida获取key2.1 静态分析微信apk文件2.2 frida hook&#xff1a; 3. 用sqlcipher打开数据库&#xff1a; Frida-hook:微信数据库的破解 我们可以从root过的手机中&#xff0c;找到微信相关数据库&am…...

【Unity每日一记】WheelColider组件汽车游戏的关键

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…...

项目-IM

tim-server tim-server启动类实现CommandLineRunner接口&#xff0c;重写run()方法 run()方法开启一个线程&#xff0c;创建zk持久父节点&#xff0c;创建临时顺序子节点&#xff0c;将netty-server信息写入 1.1 用户登录 1.2 gateway向认证授权中心请求token 1.3 从zookee…...

2023年口腔医疗行业研究报告

第一章 行业概况 1.1 定义 口腔医疗行业是以口腔医疗服务消费为基础&#xff0c;包含医疗及消费双重属性&#xff0c;是 为满足口腔及颌面部疾病的预防和诊疗、口腔美容等需求提供相关医疗服务的行业。 该行业的主要参与者包括口腔保健专业人员&#xff08;如牙医、口腔外科…...

1Java:JDK是什么

1Java是介于编译型语言和解释型语言之间 编译型语言&#xff1a;c c先编译成机器码&#xff0c;再执行 解释型语言&#xff1a;pytn 解释器直接加载源码运行&#xff0c;但是运行效果低 Java是将代码编译成一张字节码,优点 针对不同平台编写虚拟机&#xff0c;不同平台的虚拟…...

使用 Amazon Lambda 进行无服务器计算:云架构中的一场革命

引言 十年前,无服务器架构还像是痴人说梦。不再如此了! 有了 Amazon Lambda,我们现在可以建构和运行应用程序而不需要考虑服务器。云供应商会无缝地处理所有服务器的供应、扩展和管理。我们只需要关注代码。 这为云部署带来了前所未有的敏捷性、自动化和优化。但是,要发挥它的…...

谨慎使用Lombok的@Builder注解

现在很多程序员都习惯使用Lombok来使代码更加 “简洁”。但是使用Lombok也会造成很多问题&#xff0c;尤其Builder 有个很大的坑&#xff0c;已经见过好几次由于使用Builder注解导致默认值失效的问题&#xff0c;如果测试时没有在意这个问题&#xff0c;就很容易引发线上问题。…...

leetcode455. 分发饼干 【贪心】

题目&#xff1a; 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼干 j&#xff0c…...

4V-28V Vin,6A同步降压DCDC变换器,集成3.3V和150mA LDO——SCT2361FPBR

SCT2361是一种高效率的同步降压型DC-DC变换器&#xff0c;集成3.3V和150mA LDO。输入电压范围为4V-28V&#xff0c;输出电压可调为0.6V&#xff0c;具有3mmx3mm的小QFN封装&#xff0c;可提供连续6A的输出电流。该器件将高、低压侧功率mosfet集成&#xff0c;使导通损耗降到最低…...

Linux中的scp指令

在Linux和Unix系统中&#xff0c;scp&#xff08;Secure Copy Protocol&#xff09;是一个用于通过SSH协议进行安全文件传输的命令行实用程序。与传统的cp&#xff08;copy&#xff09;命令不同&#xff0c;scp允许用户在不同的机器之间、或同一台机器的不同位置之间传输文件或…...

剑指 Offer 11. 旋转数组的最小数字

剑指 Offer 11. 旋转数组的最小数字 二分 要注意的是&#xff0c;由于存在重复数字&#xff0c;所以初始状态可能不满足二分的性质。不满足的情况是&#xff1a;左边开始的数字和右边结束的数字相等&#xff0c;所以一开始要缩小右边界&#xff0c;让右边界的数字小于第一个数…...