深度学习入门教学——卷积神经网络CNN
目录
一、CNN简介
一、输入层
二、卷积层
三、池化层
四、全连接层
一、CNN简介
1、应用领域
- 检测任务
- 分类与检索
- 超分辨率重构
2、卷积网络与传统网咯的区别
- 传统神经网络和卷积神经网络都是用来提取特征的。
- 神经网络:

- 可以将其看作是一个二维的。
- 卷积神经网络:

- 可以将其看作是一个三维的。
3、整体框架
一、输入层
- 该层主要是对原始图像数据进行预处理,保留了图片本身的结构。
- 对于黑白的32×32的图片,CNN的输入是一个32*32的二维神经元;对于RGB格式的28×28 图片,CNN的输入则是一个32*32*3的三维神经元。

- 三维包括宽度、高度和深度。
- 深度可以看作是不同的颜色通道,例如:RGB,可拆分为R、G、B三个通道。
二、卷积层
1、卷积的任务
- 卷积的任务,就是将图像分成若干区域,然后计算每个区域的特征值。
- 例如:

- 将图像分割为5*5*3个小块,每3*3*3个小块矩阵看作是一个区域,从每个区域中提取一个特征。(上图只演示了一个通道)
- 区域的数据:
,区域的权重参数矩阵:
,特征图:
2、卷积特征值计算方法
2.1、图像颜色通道

- 计算特征值的过程中,让每个通道都要做计算,然后将每个通道的结果加在一起。


2.2、特征值计算过程
,每一个通道会有一个权重参数矩阵,方法是计算它们的内积,3个通道的计算结果之和加上偏移值(b0=1),即为最终特征值。- 【注】上图中的三个权重参数矩阵,统称为卷积核。
- 例如:
- 最终结果:
- (0+2+0)+b=3(b为偏置值,已知为1)

3、特征图表示
- 特征图可以不唯一,下图中就有两个特征图。

- 主要原因是,卷积核可以不唯一(使用不同的方法进行特征提取),这样的话就会计算出多个特征图来,如下图。

- 【注】有几个卷积核就有几个特征图;卷积核中权重参数矩阵的个数与输入的通道个数相同。
- 计算特征图时,每个区域平移了两个单元格(可自行定义)即步长为2,如下图。

4、步长与卷积核大小对结果的影响
4.1、堆叠的卷积层
- 由下图可知,在分类图像的过程中,做了很多次卷积。

- 多次卷积并不是对一张图片从粗到细地多次计算特征,而是从所得到特征图的基础上去做卷积,如下图。

4.2、卷积层涉及参数
4.2.1、滑动窗口步长
- 步长为1的卷积
- 步长为2的卷积
- 步长越小,得到的特征越丰富,但计算效率越慢。
4.2.2、卷积核尺寸
- 卷积核尺寸即为卷积核中权重参数矩阵的维度。下图卷积核的尺寸即为3*3*3。
,也可以4*4*3,卷积核尺寸越小,得到的特征越丰富。
4.2.3、边缘填充
- 一张图片在划分区域计算特征时,有些点会被重复利用,即会影响多个结果。例如下图划红线的区域,就会影响特征图中的两个值。


- 边缘的点只会影响一个值,而靠近中心的点可能会影响多个值,这对边缘来说是不公平的。例如下图画圈的点,影响了特征图中的四个值。


- 原始输入中,即为下图5*5紫色矩阵。在其边界加上一圈全0的值,这样的话,原本的边界就不再是边界了,一定程度上弥补了边界信息缺失的问题。
,添加0对最终结果不会产生影响。
4.2.4、卷积核个数
- 卷积核个数决定了最终得到的特征图个数。
- 每个卷积核的数值是不同的。
5、特征图尺寸计算与参数共享
5.1、卷积结果计算公式
- 长度:

- 宽度:

- 其中W1、H1表示输入的宽度、长度;W2、H2表示输出特征图的宽度、长度;F表示卷积核长和宽的大小;S表示滑动窗口的步长;P表示边界填充(加几圈0)。
- 例如:
5.2、卷积参数共享
- 图片中的每个区域,都是使用同一卷积核进行计算,然后得到一个特征图,即为参数共享。
- 这样可以大量节省参数,例如:
三、池化层
1、池化层的作用
- 池化层的作用是对得到的特征图进行压缩。
- 下图就是对特征图的长、宽进行了压缩,而不是减少特征图的个数。

2、最大池化
- 池化过程中,是选择某个区域中最大的特征值(值越大,越重要),如下图。

四、全连接层
- 全连接层的作用:将得到的所有特征图整合起来,便于分类处理。

- 全连接层把所有二维特征图转换为一个二维向量。
相关文章:
深度学习入门教学——卷积神经网络CNN
目录 一、CNN简介 一、输入层 二、卷积层 三、池化层 四、全连接层 一、CNN简介 1、应用领域 检测任务 分类与检索 超分辨率重构 2、卷积网络与传统网咯的区别 传统神经网络和卷积神经网络都是用来提取特征的。神经网络: 可以将其看作是一个二维的。卷积神经…...
【MySQL】MySQL系统变量(system variables)列表(mysqld --verbose --help的结果例)
文章目录 【MySQL】MySQL系统变量(system variables)列表(mysqld --verbose --help的结果例)mysqld --verbose --help的结果例参考 【免责声明】文章仅供学习交流,观点代表个人,与任何公司无关。 编辑|SQL和…...
Python学习之四 数据输入与输出
(一) 脚本编程 前面的章节,组要学习了一些简单的Python编程,使用的是交互式解释器,本章节将开始进行脚本编程。可以使用多种编辑器或者IDE完成编码,主要使用vim。 参考前续小节的写法,我们给a、b分别赋值3和5。 在终端运行程序后发现,没有任何输出。这就是本次我们将要…...
VBA技术资料MF51:VBA_在Excel中突出显示唯一值
【分享成果,随喜正能量】世间万物,因果循环不休,你的善心善行,都可能成为你的善缘善果。每天忆佛念佛,每天都在佛菩萨的加持下生活,自然吉祥如意,法喜充满。 。 我给VBA的定义:VBA是…...
Mqtt学习笔记--交叉编译移植(1)
简述 Mqtt目前在物联网行业的应用比较多,mqtt属于应用层的一个中间件,这个中间件实现消息的订阅发布机制。网上介绍Mqtt的实现原来的比较多,这里不细介绍。 其实在我们之前的产品中,自己也开发的有类似的中间件,除了具…...
Gateway的服务网关
Gateway服务网关 Gateway网关是我们服务的守门神,所有微服务的统一入口。 网关的核心功能特性: 请求路由 权限控制 限流 架构如下: gateway使用 引入依赖 创建gateway服务,引入依赖 <!--网关--> <dependency>…...
信息化发展18
存储技术 1 、存储分类 2 、常用存储模式的技术与应用对比: ( 1 ) 存储虚拟化( Storage Virtualization ) 是“ 云存储” 的核心技术之一。 它带给人们直接的好处是提高了存储利用率, 降低了存储成本, 简…...
TypeScript学习 + 贪吃蛇项目
TypeSCript简介 TypeScript是JavaScript的超集。它对JS进行了扩展,向JS中引入了类型的概念,并添加了许多新的特性。TS代码需要通过编译器编译为JS,然后再交由JS解析器执行。TS完全兼容JS,换言之,任何的JS代码都可以直…...
YOLO-NAS详细教程-介绍如何进行物体检测
对象检测是计算机视觉中的一项核心任务,可以检测和分类图像中的边界框。自从深度学习首次取得突破以来,它就以极快的速度获得普及和普及,并推动了医疗领域、监控、智能购物等众多公司的发展。考虑到它最终满足了两个基本需求,这一点也就不足为奇了端到端方式:找到所有当前…...
容器没有命令时,如何查看进程、容器executable file not found in $PATH: unknown
前言 当容器没有ps -ef命令时,可以通过以下的命令来查看容器的进程。 docker container top查看容器运行的进程(该命令很有用) #docker container top 命令用于查看容器运行的进程 #当容器里面没有ps -ef命令时,使用docker con…...
如何使用 Amazon EMR 在 Amazon EKS 上构建可靠、高效、用户友好的 Spark 平台
这是 SafeGraph 技术主管经理 Nan Zhu 与亚马逊云科技高级解决方案架构师 Dave Thibault 共同撰写的特约文章。 SafeGraph 是一家地理空间数据公司,管理着全球超过 4100 万个兴趣点(POI,Point of Interest),提供品牌隶…...
国产IDE如何获得捐赠和风险投资
有人在开发VB6 脚本工具,有人在开发VB6的插件,把VB6变成VSCODE界面模式,再加上NUGET,NPM等包管理器原理的在线组件、源码下载功能。 还有TWINBASIC几乎80%代替了VB6,radbasic一直封闭,听说也收到了不少众筹…...
【数学建模】清风数模正课5 相关性分析
相关系数 相关性分析的关键是计算相关系数,在本节课中将会介绍两种常用的相关系数:皮尔逊相关系数(Pearson)和斯皮尔曼相关系数(Spearman)。 它们可以用来衡量两个变量间相关性的大小,对于不同…...
Java设计模式:一、六大设计原则-03:里氏替换原则
文章目录 一、定义:里氏替换原则1.1 里氏替换原则1.2 里氏替换原则的作用 二、模拟场景:里氏替换原则三、违背方案:里氏替换原则3.1 工程结构3.2 储蓄卡和信用卡3.2.1 储蓄卡3.2.2 信用卡 3.3 单元测试3.3.1 储蓄卡测试3.3.2 信用卡测试 四、…...
jmeter 固定定时器
固定定时器(Constant Timer)是一个定时器元件,可以在线程组中的每个线程之间添加固定的延迟时间。固定定时器会对每个线程的执行进行一定的暂停。 聊一下和线程组中的调度器对线程组执行时长的影响: 相同: 都会影响线…...
【微服务部署】07-调用链追踪
文章目录 集成SkyWalking实现调用链追踪1. SkyWalking架构图2. 代码集成SkyWalking 集成SkyWalking实现调用链追踪 1. SkyWalking架构图 Receiver是SkyWalking的入口,支持gRPC和HTTP协议。 SkyWalking内部有分析和查询两个部分 存储方面SkyWalking支持Elasticsearc…...
【C++入门】命名空间、缺省参数、函数重载、引用、内联函数
👻内容专栏: C/C编程 🐨本文概括: C入门学习必备语法 🐼本文作者: 阿四啊 🐸发布时间:2023.9.3 前言 C是在C的基础之上,容纳进去了面向对象编程思想,并增加…...
c++ 学习之 构造函数的使用规则
上规则 // 默认情况下,c 编译器至少给一个类添加三个函数 //1.默认构造函数(无参,函数体为空) //2.默认析构函数 (无参 ,函数体为空) //3.默认拷贝函数,对其属性进行值拷贝 //构…...
C++操作符重载的注意事项
关于C操作符重载,可以用类内的成员运算符重载或友元函数。但是注意两个不能同时出现,不然编译出错。 #include<iostream> using namespace std; class Complex{public:Complex(int r0,int i0){real r;imag i;}//#if 0Complex operator(Complex …...
10 | Spark 查找每个单词的最大行号
假设你有一个包含文本行号和文本内容的RDD,现在你想找出每个单词出现在哪些行,并计算它们出现的最大行号。 需求是从包含文本行号和文本内容的RDD中找出每个单词出现在哪些行,并计算它们出现的最大行号。 具体需求如下: 数据输入: 代码从一个包含文本行号和文本内容的RD…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...









