数学建模:Logistic回归预测
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛
数学建模:Logistic回归预测
Logistic回归预测
logistic方程的定义:
x t = 1 c + a e b t x_{t}=\frac{1}{c+ae^{bt}}\quad xt=c+aebt1
d x d t = − a b e b t ( c + a e b t ) 2 > 0 \frac{dx}{dt}=\frac{-abe^{bt}}{\left(c+ae^{bt}\right)^2}>0 dtdx=(c+aebt)2−abebt>0
算法流程
-
建立logistic方程
-
求解 其三个未知系数:
a
,b
,c
-
Yule算法求解:构建如下的 线性方程 Z Z Z
x t + 1 − x t x t + 1 = 1 − x t x t + 1 = 1 − c + a e b ( t + 1 ) c + a e b t = ( a e b t + c − c ) ( 1 − e b ) ( c + a e b t ) = ( 1 − e b ) − c ( 1 − e b ) x t \begin{aligned}\frac{x_{t+1}-x_{t}}{x_{t+1}}=1-\frac{x_{t}}{x_{t+1}} \\&=1-\frac{c+ae^{b(t+1)}}{c+ae^{bt}} \\&=\frac{\left(ae^{bt}+c-c\right)\left(1-e^b\right)}{\left(c+ae^{bt}\right)} \\&=\left(1-e^b\right)-c\left(1-e^b\right)x_t\quad\end{aligned} xt+1xt+1−xt=1−xt+1xt=1−c+aebtc+aeb(t+1)=(c+aebt)(aebt+c−c)(1−eb)=(1−eb)−c(1−eb)xt
-
对此方程进行最小二乘法(OLS),得到方程的估计值,然后进而得到 a,b,c的值:
γ = 1 − e b 以及 β = − c ( 1 − e b ) , \gamma=1-e^b\text{ 以及 }\beta=-c\big(1-e^b\big), γ=1−eb 以及 β=−c(1−eb),
a ^ = e x p { 1 n [ ∑ t = 1 n l n ( 1 x t − c ^ − n ( n + 1 ) 2 b ^ ) ] } 5 ) \hat a=exp\bigg\{\frac{1}{n}\bigg[\sum_{t=1}^nln(\frac{1}{x_t}-\hat c-\frac{n(n+1)}{2}\hat b)\bigg]\bigg\}5) a^=exp{n1[t=1∑nln(xt1−c^−2n(n+1)b^)]}5)
- 然后需要预测自变量值 x x x 直接带入即可。
代码实现
function [a,b,c] = mfunc_Logistic(X)% logistic 回归预测% params:% X: 输入向量% returns:% a,b,c: 分别为logistic的未知参数n=length(X)-1;% 得到线性方程: Zfor t=1:nZ(t)=(X(t+1)-X(t))/X(t+1);end% 前面插一列全1向量X1=[ones(n,1) X(1:n)']; % (46,2)% 对线性方程 Z 进行最小二乘法OLS% B:回归系数% bint:回归系数的置信区间% r:残差% rint:残差的置信区间% stats:包含四个统计量:R^2, F, 概率p, 估计误差方差Y=Z';[B,Bint,r,rint,stats]=regress(Y,X1);%最小二乘(OLS)gamma=B(1,1);beta=B(2,1);%% 带入公式 计算logistic方程的 abcb=log(1-gamma);c=beta/(exp(b)-1);a=exp((sum(log(1./X(1:n)-c))-n*(n+1)*b/2)/n);
end
相关文章:

数学建模:Logistic回归预测
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 数学建模:Logistic回归预测 Logistic回归预测 logistic方程的定义: x t 1 c a e b t x_{t}\frac{1}{cae^{bt}}\quad xtcaebt1 d x d t − a b e b t ( c a e b t ) 2 >…...

一个面向MCU的小型前后台系统
JxOS简介 JxOS面向MCU的小型前后台系统,提供消息、事件等服务,以及软件定时器,低功耗管理,按键,led等常用功能模块。 gitee仓库地址为(复制到浏览器打开): https://gitee.com/jer…...

软件外包开发人员分类
在软件开发中,通常会分为前端开发和后端开发,下面和大家分享软件开发中的前端开发和后端开发分类和各自的职责,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1. 前端开发&…...
HTML 元素被定义为块级元素或内联元素
大多数 HTML 元素被定义为块级元素或内联元素。 10. 块级元素 块级元素在浏览器显示时,通常会以新行来开始(和结束)。 我们已经学习过的块级元素有: <h1>, <p>, <ul>, <table> 等。 值得注意的是: <p> 标签…...

单调递增的数字【贪心算法】
单调递增的数字 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时,我们称这个整数是单调递增的。 给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。 public class Solution {public int monotoneIncreasingDigits…...

gnuradio-hackrf_info.exe -FM频率使用
97910000...
JVM学习(三)--生产环境的线程问题诊断
1.如何定位哪个进程对cpu占用过高 使用top命令 2.如何定位到某个进程的具体某个线程 使用ps H -eo pid,tid,%cpu | grep 进程id (可以具体定位到某个进程的某个线程的cpu占用情况) 3.如何查看有问题线程的具体信息,定位到代码的行数 使用jstack 进程id 可以找…...
PHP数组处理$arr1转换为$arr2
请编写一段程序将$arr1转换为$arr2 $arr1 array( 0>array (fid>1,tid>1,name>Name1), 1>array (fid>2,tid>2,name>Name2), 2>array (fid>3,tid>5,name>Name3), 3>array (fid>4,tid>7,name>Name4), 4>array (fid>5,tid…...
ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630)
安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630) 二、CVE-2022-47630 2.1 Bug 1:证书校验不足 2.2 Bug 2:auth_nvctr()中缺少边界检查...

详解 SpringMVC 中获取请求参数
文章目录 1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、[RequestParam ](/RequestParam )4、[RequestHeader ](/RequestHeader )5、[CookieValue ](/CookieValue )6、通过POJO获取请求参数7、解决获取请求参数的乱码问题总结 在Spring MVC中,获取请…...

Message: ‘chromedriver‘ executable may have wrong permissions.
今天运行项目遇到如下代码 driverwebdriver.Chrome(chrome_driver, chrome_optionsoptions)上述代码运行报错如下: Message: chromedriver executable may have wrong permissions. Please see https://sites.google.com/a/chromium.org/chromedriver/home出错的原…...

每日一题 1372二叉树中的最长交错路径
题目 给你一棵以 root 为根的二叉树,二叉树中的交错路径定义如下: 选择二叉树中 任意 节点和一个方向(左或者右)。如果前进方向为右,那么移动到当前节点的的右子节点,否则移动到它的左子节点。改变前进方…...

【力扣每日一题】2023.9.2 最多可以摧毁的敌人城堡数量
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 这道题难在阅读理解,题目看得我匪夷所思,错了好多个测试用例才明白题目说的是什么。 我简单翻译一下就是寻找1和…...
kotlin实现java的单例模式
代码 package com.flannery.interviewdemo.singleinstance//https://blog.csdn.net/Jason_Lee155/article/details/128796742 Java实现 //public class SingletonDemo { // private static SingletonDemo instancenew SingletonDemo(); // private SingletonDemo() // …...
使用 KeyValueDiffers 检测Angular 对象的变化
使用 KeyValueDiffers 检测Angular 对象的变化 ngDoCheck钩子 ngDoCheck 是 Angular 生命周期钩子之一。它允许组件在 Angular 检测到变化时执行自定义的变化检测逻辑。 当任何组件或指令的输入属性发生变化、在组件内部发生了变更检测周期或者当主动触发变更检测策略&#…...
Macos 10.13.2安装eclipse
eclipse for php 安装2021-12最后版本4.22 2021-12 R | Eclipse Packages jdk17 x64 dmg安装包,要安装jdk这个才能运行 Java Downloads | Oracle...

Android逆向学习(一)vscode进行android逆向修改并重新打包
Android逆向学习(一)vscode进行android逆向修改并重新打包 写在前面 其实我不知道这个文章能不能写下去,其实我已经开了很多坑但是都没填上,现在专利也发出去了,就开始填坑了,本坑的主要内容是关于androi…...

【深入浅出设计模式--状态模式】
深入浅出设计模式--状态模式 一、背景二、问题三、解决方案四、 适用场景总结五、后记 一、背景 状态模式是一种行为设计模式,让你能在一个对象的内部状态变化时改变其行为,使其看上去就像改变了自身所属的类一样。其与有限状态机的概念紧密相关&#x…...
Debezium系列之:Debezium Server在生产环境大规模应用详细的技术方案
Debezium系列之:Debezium Server在生产环境大规模应用详细的技术方案 一、需求背景二、Debezium Server实现技术三、技术方案流程四、生成接入配置五、新增数据库接入和删除数据库接入效果六、监控zookeeper节点程序七、新增数据库接入部署debezium server程序八、删除数据库接…...

Echart笔记
Echart笔记 柱状图带背景色的柱状图将X与Y轴交换制作为进度条 柱状图 带背景色的柱状图 将X与Y轴交换制作为进度条 //将X与Y轴交换制作为进度条 option { xAxis: {type: value,min:0,max:100,show:false,//隐藏x轴},yAxis: {type: category,data:[进度条],show:false,//隐…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...