当前位置: 首页 > news >正文

HTML 元素被定义为块级元素或内联元素

大多数 HTML 元素被定义为块级元素内联元素

10. 块级元素

块级元素在浏览器显示时,通常会以新行来开始(和结束)。

我们已经学习过的块级元素有: <h1>, <p>, <ul>, <table> 等。

值得注意的是: <p> 标签中不能包含任何块级元素。

<div> 元素

<div> 元素是块级元素,它可用于组合其他 HTML 元素的容器。

<div> 元素没有特定的含义。除此之外,由于它属于块级元素,浏览器会在其前后显示折行。

如果与 CSS 一同使用,<div> 元素可用于对大的内容块设置样式属性。

<div> 元素的另一个常见的用途是文档布局。

值得注意的是: <div> 取代了使用表格定义布局的老式方法。

内联元素

内联元素在显示时通常不会以新行开始。

我们已经学习过的内联元素有: <td>, <a>, <img> 等。

值得注意的是: <a> 标签中不能包含 <a> 标签,但可以包含其他任何元素。

<span> 元素

<span> 元素是内联元素,可用作文本的容器。<span> 元素也没有特定的含义。

当与 CSS 一同使用时,<span> 元素可用于为部分文本设置样式属性。

值得注意的是: 内联元素中不能包含块级元素。一般都是块级元素中包含内联元素。
undefined

相关文章:

HTML 元素被定义为块级元素或内联元素

大多数 HTML 元素被定义为块级元素或内联元素。 10. 块级元素 块级元素在浏览器显示时&#xff0c;通常会以新行来开始&#xff08;和结束&#xff09;。 我们已经学习过的块级元素有: <h1>, <p>, <ul>, <table> 等。 值得注意的是: <p> 标签…...

单调递增的数字【贪心算法】

单调递增的数字 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 public class Solution {public int monotoneIncreasingDigits…...

gnuradio-hackrf_info.exe -FM频率使用

97910000...

JVM学习(三)--生产环境的线程问题诊断

1.如何定位哪个进程对cpu占用过高 使用top命令 2.如何定位到某个进程的具体某个线程 使用ps H -eo pid,tid,%cpu | grep 进程id (可以具体定位到某个进程的某个线程的cpu占用情况) 3.如何查看有问题线程的具体信息&#xff0c;定位到代码的行数 使用jstack 进程id 可以找…...

PHP数组处理$arr1转换为$arr2

请编写一段程序将$arr1转换为$arr2 $arr1 array( 0>array (fid>1,tid>1,name>Name1), 1>array (fid>2,tid>2,name>Name2), 2>array (fid>3,tid>5,name>Name3), 3>array (fid>4,tid>7,name>Name4), 4>array (fid>5,tid…...

ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630) 二、CVE-2022-47630 2.1 Bug 1:证书校验不足 2.2 Bug 2:auth_nvctr()中缺少边界检查...

详解 SpringMVC 中获取请求参数

文章目录 1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、[RequestParam ](/RequestParam )4、[RequestHeader ](/RequestHeader )5、[CookieValue ](/CookieValue )6、通过POJO获取请求参数7、解决获取请求参数的乱码问题总结 在Spring MVC中&#xff0c;获取请…...

Message: ‘chromedriver‘ executable may have wrong permissions.

今天运行项目遇到如下代码 driverwebdriver.Chrome(chrome_driver, chrome_optionsoptions)上述代码运行报错如下&#xff1a; Message: chromedriver executable may have wrong permissions. Please see https://sites.google.com/a/chromium.org/chromedriver/home出错的原…...

每日一题 1372二叉树中的最长交错路径

题目 给你一棵以 root 为根的二叉树&#xff0c;二叉树中的交错路径定义如下&#xff1a; 选择二叉树中 任意 节点和一个方向&#xff08;左或者右&#xff09;。如果前进方向为右&#xff0c;那么移动到当前节点的的右子节点&#xff0c;否则移动到它的左子节点。改变前进方…...

【力扣每日一题】2023.9.2 最多可以摧毁的敌人城堡数量

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 这道题难在阅读理解&#xff0c;题目看得我匪夷所思&#xff0c;错了好多个测试用例才明白题目说的是什么。 我简单翻译一下就是寻找1和…...

kotlin实现java的单例模式

代码 package com.flannery.interviewdemo.singleinstance//https://blog.csdn.net/Jason_Lee155/article/details/128796742 Java实现 //public class SingletonDemo { // private static SingletonDemo instancenew SingletonDemo(); // private SingletonDemo() // …...

使用 KeyValueDiffers 检测Angular 对象的变化

使用 KeyValueDiffers 检测Angular 对象的变化 ngDoCheck钩子 ngDoCheck 是 Angular 生命周期钩子之一。它允许组件在 Angular 检测到变化时执行自定义的变化检测逻辑。 当任何组件或指令的输入属性发生变化、在组件内部发生了变更检测周期或者当主动触发变更检测策略&#…...

Macos 10.13.2安装eclipse

eclipse for php 安装2021-12最后版本4.22 2021-12 R | Eclipse Packages jdk17 x64 dmg安装包,要安装jdk这个才能运行 Java Downloads | Oracle...

Android逆向学习(一)vscode进行android逆向修改并重新打包

Android逆向学习&#xff08;一&#xff09;vscode进行android逆向修改并重新打包 写在前面 其实我不知道这个文章能不能写下去&#xff0c;其实我已经开了很多坑但是都没填上&#xff0c;现在专利也发出去了&#xff0c;就开始填坑了&#xff0c;本坑的主要内容是关于androi…...

【深入浅出设计模式--状态模式】

深入浅出设计模式--状态模式 一、背景二、问题三、解决方案四、 适用场景总结五、后记 一、背景 状态模式是一种行为设计模式&#xff0c;让你能在一个对象的内部状态变化时改变其行为&#xff0c;使其看上去就像改变了自身所属的类一样。其与有限状态机的概念紧密相关&#x…...

Debezium系列之:Debezium Server在生产环境大规模应用详细的技术方案

Debezium系列之:Debezium Server在生产环境大规模应用详细的技术方案 一、需求背景二、Debezium Server实现技术三、技术方案流程四、生成接入配置五、新增数据库接入和删除数据库接入效果六、监控zookeeper节点程序七、新增数据库接入部署debezium server程序八、删除数据库接…...

Echart笔记

Echart笔记 柱状图带背景色的柱状图将X与Y轴交换制作为进度条 柱状图 带背景色的柱状图 将X与Y轴交换制作为进度条 //将X与Y轴交换制作为进度条 option { xAxis: {type: value,min:0,max:100,show:false,//隐藏x轴},yAxis: {type: category,data:[进度条],show:false,//隐…...

docker 笔记1

目录 1.为什么有docker ? 2.Docker 的核心概念 3.容器与虚拟机比较 3.1传统的虚拟化技术 3.2容器技术 3.3Docker容器的有什么作用&#xff1f; 3.4应用案例 4. docker 安装下载 4.1CentOS Docker 安装 4.2 Docker的基本组成 &#xff1f;&#xff08;面试&#xff09…...

HTTP Get 和 Post 的区别

分析&回答 使用规范 根据HTTP规范&#xff0c;GET用于信息获取&#xff0c;而且应该是安全的和幂等的。 根据HTTP规范&#xff0c;POST表示可能修改变服务器上的资源的请求。 传递参数 GET请求的数据会附在URL之后&#xff08;就是把数据放置在HTTP协议头中&#xff09;。…...

C++超级迷宫游戏

游戏效果 用钥匙、护盾等道具帮助你的小人通过大门、墙、怪物、岩浆等困难到达终点。 游戏代码 #include<bits/stdc.h> #include<conio.h> #include<windows.h> using namespace std; void Color(int a) {if(a0) SetConsoleTextAttribute(GetStdHandle(STD…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...