Google colab部署VITS——零门槛快速克隆任意角色声音
目录
序言
查看GPU配置
复制代码库并安装运行环境
选择预训练模型
上传视频链接(单个不应长于20分钟)
自动处理所有上传的数据
训练质量相关:实验发现目前使用CJ模型+勾选ADD_AUXILIARY,对于中/日均能训练出最好的效果,第一次训练建议默认使用该组
开始训练
微调完成后,在这里尝试效果
下载模型
模型演示
Text-to-Speech
Voice Conversion
序言
语音合成技术是人工智能领域的重要分支,近年来取得了长足的进步。涌现出众多优秀的语音合成模型,其中VITS和DDSP是两种代表性的模型。
VITS模型采用了变分自编码器和声码器的组合架构,在长期训练下可以生成逼真、自然的语音。然而,由于其对显存的要求较高,不适合在普通的个人电脑上进行本地部署训练。
为了降低VITS模型的入手门槛,我选择使用Google Colab来实现本地部署训练。Google Colab是一个免费的云端计算平台,可以提供强大的计算能力。在此基础上,其简便性进行了进一步强化,目前可以仅通过视频链接来一键进行数据集处理,可以大大节省用户的时间和精力。
当然,VITS模型也存在一定的缺点,在短时间和数据集较少、质量较低的情况下,其效果会不如DDSP。因此,在选择合适的语音合成模型时,需要根据实际情况进行考量。
查看GPU配置
# 查看GPU配置
# Check GPU configuration
!nvidia-smi
复制代码库并安装运行环境
#@title STEP 1 复制代码库并安装运行环境
#@markdown #STEP 1 (6 min)
#@markdown ##复制代码库并安装运行环境
#@markdown ##Clone repository & Build environment!git clone https://github.com/Plachtaa/VITS-fast-fine-tuning.git
!python -m pip install --upgrade --force-reinstall regex
!python -m pip install --force-reinstall soundfile
!python -m pip install --force-reinstall gradio
!python -m pip install imageio==2.4.1
!python -m pip install --upgrade youtube-dl
!python -m pip install moviepy
%cd VITS-fast-fine-tuning!python -m pip install --no-build-isolation -r requirements.txt
!python -m pip install --upgrade numpy
!python -m pip install --upgrade --force-reinstall numba
!python -m pip install --upgrade Cython!python -m pip install --upgrade pyzmq
!python -m pip install pydantic==1.10.4
!python -m pip install ruamel.yaml# build monotonic align
%cd monotonic_align/
!mkdir monotonic_align
!python setup.py build_ext --inplace
%cd ..
!mkdir pretrained_models
# download data for fine-tuning
!wget https://huggingface.co/datasets/Plachta/sampled_audio4ft/resolve/main/sampled_audio4ft_v2.zip
!unzip sampled_audio4ft_v2.zip
# create necessary directories
!mkdir video_data
!mkdir raw_audio
!mkdir denoised_audio
!mkdir custom_character_voice
!mkdir segmented_character_voice
选择预训练模型
#@title STEP 1.5 选择预训练模型
#@markdown ###STEP 1.5 选择预训练模型
#@markdown ###Choose pretrained model to start
#@markdown CJE为中日英三语模型,CJ为中日双语模型,C为纯中文模型#@markdown CJE for Chinese, Japanese & English model,CJ for Chinese & Japanese model
PRETRAINED_MODEL = "CJ" #@param ["CJE","CJ","C"]
if PRETRAINED_MODEL == "CJ":!wget https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/model/D_0-p.pth -O ./pretrained_models/D_0.pth!wget https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/model/G_0-p.pth -O ./pretrained_models/G_0.pth!wget https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/model/config.json -O ./configs/finetune_speaker.json
elif PRETRAINED_MODEL == "CJE":!wget https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/resolve/main/pretrained_models/D_trilingual.pth -O ./pretrained_models/D_0.pth!wget https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/resolve/main/pretrained_models/G_trilingual.pth -O ./pretrained_models/G_0.pth!wget https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/resolve/main/configs/uma_trilingual.json -O ./configs/finetune_speaker.json
elif PRETRAINED_MODEL == "C":!wget https://huggingface.co/datasets/Plachta/sampled_audio4ft/resolve/main/VITS-Chinese/D_0.pth -O ./pretrained_models/D_0.pth!wget https://huggingface.co/datasets/Plachta/sampled_audio4ft/resolve/main/VITS-Chinese/G_0.pth -O ./pretrained_models/G_0.pth!wget https://huggingface.co/datasets/Plachta/sampled_audio4ft/resolve/main/VITS-Chinese/config.json -O ./configs/finetune_speaker.json
上传视频链接(单个不应长于20分钟)
#@markdown 运行该代码块会出现一个文件上传的入口,上传单个`.txt`文件。若格式正确的话,视频会自动下载并将下载后的文件名打印在下方。#@markdown Running this code block will prompt you to upload a file.
#@markdown Please upload a single `.txt` file. If you have put the links in the correct format,
#@markdown the videos will be automatically downloaded and displayed below.
%run scripts/download_video.py
!ls ./video_data/
自动处理所有上传的数据
#@markdown 运行该单元格会对所有上传的数据进行自动去背景音&标注。
#@markdown 由于需要调用Whisper和Demucs,运行时间可能较长。#@markdown Running this codeblock will perform automatic vocal seperation & annotation.
#@markdown Since this step uses Whisper & Demucs, it may take a while to complete.
# 将所有视频(无论是上传的还是下载的,且必须是.mp4格式)抽取音频
%run scripts/video2audio.py
# 将所有音频(无论是上传的还是从视频抽取的,必须是.wav格式)去噪
!python scripts/denoise_audio.py
# 分割并标注长音频
!python scripts/long_audio_transcribe.py --languages "{PRETRAINED_MODEL}" --whisper_size large
# 标注短音频
!python scripts/short_audio_transcribe.py --languages "{PRETRAINED_MODEL}" --whisper_size large
# 底模采样率可能与辅助数据不同,需要重采样
!python scripts/resample.py
训练质量相关:实验发现目前使用CJ模型+勾选ADD_AUXILIARY,对于中/日均能训练出最好的效果,第一次训练建议默认使用该组
#@markdown ##STEP 3.5
#@markdown 运行该单元格会生成划分好训练/测试集的最终标注,以及配置文件#@markdown Running this block will generate final annotations for training & validation, as well as config file.#@markdown 选择是否加入辅助训练数据:/ Choose whether to add auxiliary data:
ADD_AUXILIARY = False #@param {type:"boolean"}
#@markdown 辅助训练数据是从预训练的大数据集抽样得到的,作用在于防止模型在标注不准确的数据上形成错误映射。#@markdown Auxiliary data is to prevent overfitting when the audio samples are small or with low quality.#@markdown 以下情况请勾选:#@markdown 总样本少于100条/样本质量一般或较差/样本来自爬取的视频#@markdown 以下情况可以不勾选:#@markdown 总样本量很大/样本质量很高/希望加速训练/只有二次元角色# assert(not (ADD_AUXILIARY and PRETRAINED_MODEL != "CJE")), "add auxiliary data is available only available for CJE model!"
if ADD_AUXILIARY:%run preprocess_v2.py --add_auxiliary_data True --languages "{PRETRAINED_MODEL}"
else:%run preprocess_v2.py --languages "{PRETRAINED_MODEL}"
开始训练
#@markdown #STEP 4 (>=20 min)
#@markdown 开始微调模型。
#@markdown 训练时长取决于你录入/上传的音频总数。#@markdown 根据声线和样本质量的不同,所需的训练epochs数也不同。#@markdown 你也可以在Tensorboard中预览合成效果,若效果满意可提前停止。#@markdown Model fine-tuning
#@markdown Total time cost depends on the number of voices you recorded/uploaded.#@markdown Best epoch number varies depending on different uploaded voices / sample quality.#@markdown You can also preview synthezied audio in Tensorboard, it's OK to shut down training manually if you find the quality is satisfying.
import os
os.environ['TENSORBOARD_BINARY'] = '/usr/local/bin/tensorboard'if os.path.exists("/content/drive/MyDrive/"):!python scripts/rearrange_speaker.py!cp ./finetune_speaker.json ../drive/MyDrive/finetune_speaker.json!cp ./moegoe_config.json ../drive/MyDrive/moegoe_config.json%reload_ext tensorboard
%tensorboard --logdir "./OUTPUT_MODEL"
Maximum_epochs = "200" #@param {type:"string"}
#@markdown 继续之前的模型训练/Continue training from previous checkpoint
CONTINUE = True #@param {type:"boolean"}
if CONTINUE:!python finetune_speaker_v2.py -m "./OUTPUT_MODEL" --max_epochs "{Maximum_epochs}" --drop_speaker_embed False --cont True
else:!python finetune_speaker_v2.py -m "./OUTPUT_MODEL" --max_epochs "{Maximum_epochs}" --drop_speaker_embed True
微调完成后,在这里尝试效果
#@markdown ### 微调完成后,在这里尝试效果。
#@markdown ### 运行后会输出一个public URL, 点击进入网页版UI以使用模型
#@markdown ### Try out TTS & VC quality here after fine-tuning is finished.
!cp ./configs/modified_finetune_speaker.json ./finetune_speaker.json
!python VC_inference.py --model_dir ./OUTPUT_MODEL/G_latest.pth --share True
下载模型
#@markdown ### 浏览器自动下载模型和配置文件
#@markdown ### Download option 1: Running this codeblock will download model & config files by your browser.
!python scripts/rearrange_speaker.py
%run scripts/download_model.py
模型演示
Text-to-Speech
text_to_speech
Voice Conversion
Voice Conversion
相关文章:
Google colab部署VITS——零门槛快速克隆任意角色声音
目录 序言 查看GPU配置 复制代码库并安装运行环境 选择预训练模型 上传视频链接(单个不应长于20分钟) 自动处理所有上传的数据 训练质量相关:实验发现目前使用CJ模型勾选ADD_AUXILIARY,对于中/日均能训练出最好的效果&#x…...
14 | Spark SQL 的 DataFrame API 读取CSV 操作
sales.csv 内容 date,category,product,full_name,sales 2023-01-01,Electronics,Laptop,John Smith,1200.0 2023-01-02,Electronics,Smartphone,Jane Doe,800.0 2023-01-03,Books,Novel,Michael Johnson,15.0 2023-01-04,Electronics,Tablet,Emily Wilson,450.0 2023-01-05,B…...
redis面试题二
redis如何处理已过期的元素 常见的过期策略 定时删除:给每个键值设置一个定时删除的事件,比如有一个key值今天5点过期,那么设置一个事件5点钟去执行,把它数据给删除掉(优点:可以及时利用内存及时清除无效数…...
虚拟现实(VR)和增强现实(AR)
虚拟现实(Virtual Reality,VR)和增强现实(Augmented Reality,AR)是两种前沿的计算机技术,它们正在改变人们与数字世界的互动方式。虚拟现实创造了一个计算机生成的全新虚拟环境,而增…...
如何使用ChatGPT提词器,看看这篇文章
ChatGPT提词器是一种强大的自然语言处理工具,可以帮助你提高创造性写作的效率和质量。本教程将向您介绍如何使用ChatGPT提词器,以获得有趣、吸引人的文章、故事或其他文本内容。 步骤1:访问ChatGPT提词器 首先,确保您已经访问了…...
vue3-vuex持久化实现
vue3-vuex持久化实现 一、背景描述二、实现思路1.定义数据结构2.存值3.取值4.清空 三、具体代码1.定义插件2.使用插件 四、最终效果 一、背景描述 有时候我们可能需要在vuex中存储一些静态数据,比如一些下拉选项的字典数据。这种数据基本很少会变化,所以…...
详解 SpringMVC 的 @RequestMapping 注解
文章目录 1、RequestMapping注解的功能2、RequestMapping注解的位置3、RequestMapping注解的value属性4、RequestMapping注解的method属性5、RequestMapping注解的params属性(了解)6、RequestMapping注解的headers属性(了解)7、Sp…...
类的静态成员变量 static member
C自学精简教程 目录(必读) 类的静态成员 static member 变量全局只有一份副本,不会随着类对象的创建而产生副本。 static 静态成员 在类的成员变量前面增加static关键字,表示这个成员变量是类的静态成员变量。 #include <iostream> using name…...
MVSNet (pytorch版) 搭建环境 运行dtu数据集重建 实操教程(图文并茂、超详细)
文章目录 1 准备工作1.1 下载源码1.2 测试集下载2 配置环境3 dtu数据集 重建演示3.1 重建效果查看4 补充解释4.1 bash 脚本文件超参数解释4.2 lists/dtu解释5 Meshlab查看三维点云时 ,使用技巧总结1 Meshlab查看三维点云时 ,换背景颜色2 Meshlab查看三维点云时,点云颜色很暗…...
Linux系统Ubuntu以非root用户身份操作Docker的方法
本文介绍在Linux操作系统Ubuntu版本中,通过配置,实现以非root用户身份,进行Docker各项操作的具体方法。 在文章Linux系统Ubuntu配置Docker详细流程(https://blog.csdn.net/zhebushibiaoshifu/article/details/132612560࿰…...
m4s格式转换mp4
先安装 ffmpeg,具体从官网可以查到,https://ffmpeg.org,按流程走。 转换代码如下,可以任意选择格式导出 import subprocess import osdef merge_audio_video(input_audio_path, input_video_path, output_mp4_path):# 构建 FFmpe…...
SQL sever中库管理
目录 一、创建数据库 1.1库界面方式 1.2SQL命令方式 二、修改数据库 2.1库界面方式 2.2SQL命令方式 三、删除数据库 3.1库界面方式 3.2SQL命令方式 四、附加和分离数据库 4.1附加和分离数据库概述 4.2作用 4.3附加和分离数据库方法 4.4示例 一、创建数据库 1.1库…...
模板方法模式简介
概念: 模板方法模式是一种行为型设计模式,它定义了一个算法的骨架,将一些步骤延迟到子类中实现。该模式通过在抽象类中定义一个模板方法来控制算法的流程,并使用具体方法来实现其中的某些步骤。 特点: 定义了一个算…...
自动化运维工具-------Ansible(超详细)
一、Ansible相关 1、简介 Ansible是自动化运维工具,基于Python开发,分布式,无需客户端,轻量级,实现了批量系统配置、批量程序部署、批量运行命令等功能,ansible是基于模块工作的,本身没有批量部署的能力。真正具有批量部署的是a…...
计算机毕设 基于生成对抗网络的照片上色动态算法设计与实现 - 深度学习 opencv python
文章目录 1 前言1 课题背景2 GAN(生成对抗网络)2.1 简介2.2 基本原理 3 DeOldify 框架4 First Order Motion Model5 最后 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要…...
Citespace、vosviewer、R语言的文献计量学 、SCI
文献计量学是指用数学和统计学的方法,定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体,注重量化的综合性知识体系。特别是,信息可视化技术手段和方法的运用,可直观的展示主题的研究发展历程、研究现状、研究…...
linux操作系统的权限的深入学习
1.Linux权限的概念 Linux下有两种用户:超级用户(root)、普通用户。 超级用户:可以再linux系统下做任何事情,不受限制 普通用户:在linux下做有限的事情。 超级用户的命令提示符是“#”,普通用户…...
LeetCode——三数之和(中等)
题目 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组。 …...
SpringMVC使用
文章目录 一.MVC基础概念1.MVC定义2.SpringMVC和MVC的关系 二.SpringMVC的使用1.RequestMapping2.获取参数1.获取单个参数2.传递对象3.后端参数重命名(后端参数映射)4.获取URL中参数PathVariable5.上传文件RequestPart6.获取Cookie/Session/header 3.返回…...
【css】css奇数、偶数、指定数选择器:
文章目录 一、简单数字序号写法:nth-child(number)二、倍数写法:nth-child(an)三、倍数分组匹配:nth-child(anb) 与 :nth-child(an-b)四、反向倍数分组匹配:nth-child(-anb)五、奇偶匹配:nth-child(odd) 与 :nth-child(even) :nth-child(n) 选择器匹配属于其父元素的第 N 个子元…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...









