当前位置: 首页 > news >正文

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成

目录

    • 数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成
      • 生成效果
      • 基本描述
      • 程序设计
      • 参考资料

生成效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成。
生成对抗网络(Generative Adversarial Networks,简称GAN)是一种深度学习模型,由生成器网络(Generator Network)和判别器网络(Discriminator Network)组成。
GAN的目标是训练一个生成器网络,能够生成与真实数据类似的新样本。生成器网络接收一个随机噪声向量作为输入,并通过逐渐调整内部参数来生成样本。而判别器网络则负责区分生成器生成的样本和真实数据样本,它的目标是尽可能准确地判断输入样本的真假。
GAN的训练过程是一个博弈过程,生成器和判别器相互竞争、相互博弈。在每一轮训练中,生成器生成一批样本,判别器评估这些样本的真实性,并给出判别结果。生成器根据判别器的反馈来调整自己的参数,以使生成样本更加逼真。判别器也根据生成器生成的样本来调整自己的参数,以提高真实样本和生成样本的区分能力。
通过反复迭代训练生成器和判别器,GAN可以逐渐学习到生成与真实数据相似的样本。GAN在图像生成、图像修复、图像转换等任务中具有广泛的应用,也是深度学习领域的重要研究方向之一。
GAN的训练过程相对复杂,需要合适的网络结构设计、损失函数定义以及训练策略等。此外,GAN的训练也可能面临一些挑战,例如训练不稳定、模式崩溃等问题,需要进行合理的调参和技巧处理。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成
% 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 1000'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成 目录 数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成生成效果基本描述程序设计参考资料 生成效果 基本描述 数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成。 生成对抗…...

iOS - 资源按需加载 - ODR

一、瘦身技术大图 二、On-Demand Resources 简介 将其保存管理在苹果的服务器,按需使用资源、优化包体积,实现更小的应用程序。ODR 的好处: 应用体积更小,下载更快,提升初次启动速度资源会在后台下载操作系统将会在磁…...

arduino仿真 SimulIDE1.0仿真器

SimulIDE 是一个开源的电子电路模拟器,支持模拟各种电子元器件的行为,可以帮助电子工程师和爱好者进行电路设计和测试。以下是 SimulIDE 的安装和使用说明: 安装 SimulIDE SimulIDE 可以在 Windows、Linux 和 Mac OS X 等操作系统上安装。您…...

vue实现导出excel的多种方式

在Vue中实现导出Excel有多种方式,可以通过前端实现,也可以通过前后端配合实现。下面将详细介绍几种常用的实现方式。 1. 前端实现方式: 使用xlsx库:使用xlsx库可以在前端将数据导出为Excel文件。首先需要安装xlsx库,…...

redis实战-实现优惠券秒杀解决超卖问题

全局唯一ID 唯一ID的必要性 每个店铺都可以发布优惠券: 当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题: id的规律性太明显,容易被用户根据id的间隔来猜测…...

C语言:截断+整型提升+算数转换练习

详情关于整型提升、算数转换与截断见文章: 《C语言:整型提升》 《C语言:算数转换》 一、代码一 int main() { char a -1; signed char b -1; unsigned char c -1; printf("%d %d %d", a, b, c); return 0; } 求…...

Java后端开发面试题——多线程

创建线程的方式有哪些? 继承Thread类 public class MyThread extends Thread {Overridepublic void run() {System.out.println("MyThread...run...");}public static void main(String[] args) {// 创建MyThread对象MyThread t1 new MyThread() ;MyTh…...

Redis 学习笔记

文章目录 一、简介二、下载三、安装四、启动和关闭五、配置文件六、常用指令七、安全加固 版权声明:本文为CSDN博主「杨群」的原创文章,遵循 CC 4.0 BY-SA版权协议,于2023年9月3日首发于CSDN,转载请附上原文出处链接及本声明。 原…...

华为云新生代开发者招募

开发者您好,我们是华为2012UCD的研究团队 为了解年轻开发者的开发现状和趋势 正在邀请各位先锋开发者,与我们进行2小时的线上交流(江浙沪附近可线下交流) 聊聊您日常开发工作中的产品使用需求 成功参与访谈者将获得至少300元京…...

DockerFile简明教程

需求 由于在测试环境中使用了docker官网的centos 镜像,但是该镜像里面默认没有安装ssh服务,在做测试时又需要开启ssh。所以上网也查了查资料。下面详细的纪录下。在centos 容器内安装ssh后,转成新的镜像用于后期测试使用。 镜像定制 第一种…...

Cygwin是什么?是Windows还是Linux?

原文作者:gentle_zhou 原文链接:https://bbs.huaweicloud.com/blogs/408674 最近在和客户交流的时候,一直以为客户的研发环境就是windows 7,直到和对面的研发团队交流的时候,得到的反馈是在windows 7系统上安装了Cygw…...

成集云 | 多维表格自动化管理jira Server项目 | 解决方案

源系统成集云目标系统 方案介绍 基于成集云集成平台,在多维表格中的需求任务信息自动创建、更新同步至 Jira Server 的指定项目中,实现多维表格中一表管理 Jira Server 中的项目进度。 维格表是一种新一代的团队数据协作和项目管理工具&…...

数据结构(Java实现)-排序

排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序&#xff…...

C++------vector【STL】

文章目录 vector的介绍及使用vector的介绍vector的使用 vector的模拟实现 vector的介绍及使用 vector的介绍 1、vector是表示可变大小数组的序列容器。 2、就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问和数…...

Matlab(变量与文本读取)

目录 1.变量(数据)类型转换 1.1 字符 1.2 字符串 1.3 逻辑操作与赋值 2.Struct结构体数组 2.1函数的详细介绍: 2.1.1 cell2struct 2.1.1.1 垂直维度转换 2.1.1.2 水平维度转换 2.1.1.3 部分进行转换 2.1.2 rmfield 2.1.3 fieldnames(查…...

WebGPU学习(8)---使用RenderBundle

RenderBundle是什么 通常情况下,WebGPU每次绘制时都需要向RenderPassEncoder注册渲染命令。处理此绘图命令比 WebGL 内部执行的类似处理更快。但是,如果可以省略此命令注册过程,则可以能够更快地绘制。RenderBundle 就是实现这一点的。 Ren…...

【前端】常用功能合集

目录 js跳转到新标签打开PDF文件js每十个字符换行 es6用表达式或变量名作为对象的属性名 vuev-for插值、:style、:class父组件加载完后再加载子组件keep-alive缓存跨域请求第三方接口跨域请求之callback(不建议)读取本地文件浏览器播放提示音audio jquer…...

chatgpt谈论日本排放污水事件

W...Y的主页 😊 代码仓库分享 💕 近日,世界发生了让人义愤填膺的时间——日本排放核污水。这件事情是那么的突然且不计后果,海洋是我们全人类共同的财产,而日本却想用自己一己私欲将全人类的安全置之度外&#xff0c…...

Linux 查看当前目录大小

分析&回答 1. 查看当前目录下所有目录及子目录大小 du -h - . “.”代表当前目录下。也可以换成一个明确的路径 复制代码 2.查看当前文件目录各个文件夹大小 du -h --max-depth1 复制代码 查看指定目录 du -h --max-depth1 /path 复制代码 -h表示用K、M、G的人性化形…...

操作系统备考学习 day1 (1.1.1-1.3.1)

操作系统备考学习 day1 计算机系统概述操作系统的基本概念操作系统的概念、功能和目标操作系统的四个特征并发共享虚拟异步 操作系统的发展和分类操作系统的运行环境操作系统的运行机制 年初做了一个c的webserver 的项目,在学习过程中已经解除部分操作系统的知识&am…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

云原生安全实战:API网关Kong的鉴权与限流详解

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...