数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成
数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成
目录
- 数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成
- 生成效果
- 基本描述
- 程序设计
- 参考资料
生成效果
基本描述
数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成。
生成对抗网络(Generative Adversarial Networks,简称GAN)是一种深度学习模型,由生成器网络(Generator Network)和判别器网络(Discriminator Network)组成。
GAN的目标是训练一个生成器网络,能够生成与真实数据类似的新样本。生成器网络接收一个随机噪声向量作为输入,并通过逐渐调整内部参数来生成样本。而判别器网络则负责区分生成器生成的样本和真实数据样本,它的目标是尽可能准确地判断输入样本的真假。
GAN的训练过程是一个博弈过程,生成器和判别器相互竞争、相互博弈。在每一轮训练中,生成器生成一批样本,判别器评估这些样本的真实性,并给出判别结果。生成器根据判别器的反馈来调整自己的参数,以使生成样本更加逼真。判别器也根据生成器生成的样本来调整自己的参数,以提高真实样本和生成样本的区分能力。
通过反复迭代训练生成器和判别器,GAN可以逐渐学习到生成与真实数据相似的样本。GAN在图像生成、图像修复、图像转换等任务中具有广泛的应用,也是深度学习领域的重要研究方向之一。
GAN的训练过程相对复杂,需要合适的网络结构设计、损失函数定义以及训练策略等。此外,GAN的训练也可能面临一些挑战,例如训练不稳定、模式崩溃等问题,需要进行合理的调参和技巧处理。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成。
% 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 1000'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过800次训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成
数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成 目录 数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成生成效果基本描述程序设计参考资料 生成效果 基本描述 数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成。 生成对抗…...

iOS - 资源按需加载 - ODR
一、瘦身技术大图 二、On-Demand Resources 简介 将其保存管理在苹果的服务器,按需使用资源、优化包体积,实现更小的应用程序。ODR 的好处: 应用体积更小,下载更快,提升初次启动速度资源会在后台下载操作系统将会在磁…...

arduino仿真 SimulIDE1.0仿真器
SimulIDE 是一个开源的电子电路模拟器,支持模拟各种电子元器件的行为,可以帮助电子工程师和爱好者进行电路设计和测试。以下是 SimulIDE 的安装和使用说明: 安装 SimulIDE SimulIDE 可以在 Windows、Linux 和 Mac OS X 等操作系统上安装。您…...
vue实现导出excel的多种方式
在Vue中实现导出Excel有多种方式,可以通过前端实现,也可以通过前后端配合实现。下面将详细介绍几种常用的实现方式。 1. 前端实现方式: 使用xlsx库:使用xlsx库可以在前端将数据导出为Excel文件。首先需要安装xlsx库,…...

redis实战-实现优惠券秒杀解决超卖问题
全局唯一ID 唯一ID的必要性 每个店铺都可以发布优惠券: 当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题: id的规律性太明显,容易被用户根据id的间隔来猜测…...

C语言:截断+整型提升+算数转换练习
详情关于整型提升、算数转换与截断见文章: 《C语言:整型提升》 《C语言:算数转换》 一、代码一 int main() { char a -1; signed char b -1; unsigned char c -1; printf("%d %d %d", a, b, c); return 0; } 求…...

Java后端开发面试题——多线程
创建线程的方式有哪些? 继承Thread类 public class MyThread extends Thread {Overridepublic void run() {System.out.println("MyThread...run...");}public static void main(String[] args) {// 创建MyThread对象MyThread t1 new MyThread() ;MyTh…...
Redis 学习笔记
文章目录 一、简介二、下载三、安装四、启动和关闭五、配置文件六、常用指令七、安全加固 版权声明:本文为CSDN博主「杨群」的原创文章,遵循 CC 4.0 BY-SA版权协议,于2023年9月3日首发于CSDN,转载请附上原文出处链接及本声明。 原…...

华为云新生代开发者招募
开发者您好,我们是华为2012UCD的研究团队 为了解年轻开发者的开发现状和趋势 正在邀请各位先锋开发者,与我们进行2小时的线上交流(江浙沪附近可线下交流) 聊聊您日常开发工作中的产品使用需求 成功参与访谈者将获得至少300元京…...
DockerFile简明教程
需求 由于在测试环境中使用了docker官网的centos 镜像,但是该镜像里面默认没有安装ssh服务,在做测试时又需要开启ssh。所以上网也查了查资料。下面详细的纪录下。在centos 容器内安装ssh后,转成新的镜像用于后期测试使用。 镜像定制 第一种…...

Cygwin是什么?是Windows还是Linux?
原文作者:gentle_zhou 原文链接:https://bbs.huaweicloud.com/blogs/408674 最近在和客户交流的时候,一直以为客户的研发环境就是windows 7,直到和对面的研发团队交流的时候,得到的反馈是在windows 7系统上安装了Cygw…...

成集云 | 多维表格自动化管理jira Server项目 | 解决方案
源系统成集云目标系统 方案介绍 基于成集云集成平台,在多维表格中的需求任务信息自动创建、更新同步至 Jira Server 的指定项目中,实现多维表格中一表管理 Jira Server 中的项目进度。 维格表是一种新一代的团队数据协作和项目管理工具&…...

数据结构(Java实现)-排序
排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序ÿ…...

C++------vector【STL】
文章目录 vector的介绍及使用vector的介绍vector的使用 vector的模拟实现 vector的介绍及使用 vector的介绍 1、vector是表示可变大小数组的序列容器。 2、就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问和数…...

Matlab(变量与文本读取)
目录 1.变量(数据)类型转换 1.1 字符 1.2 字符串 1.3 逻辑操作与赋值 2.Struct结构体数组 2.1函数的详细介绍: 2.1.1 cell2struct 2.1.1.1 垂直维度转换 2.1.1.2 水平维度转换 2.1.1.3 部分进行转换 2.1.2 rmfield 2.1.3 fieldnames(查…...
WebGPU学习(8)---使用RenderBundle
RenderBundle是什么 通常情况下,WebGPU每次绘制时都需要向RenderPassEncoder注册渲染命令。处理此绘图命令比 WebGL 内部执行的类似处理更快。但是,如果可以省略此命令注册过程,则可以能够更快地绘制。RenderBundle 就是实现这一点的。 Ren…...

【前端】常用功能合集
目录 js跳转到新标签打开PDF文件js每十个字符换行 es6用表达式或变量名作为对象的属性名 vuev-for插值、:style、:class父组件加载完后再加载子组件keep-alive缓存跨域请求第三方接口跨域请求之callback(不建议)读取本地文件浏览器播放提示音audio jquer…...

chatgpt谈论日本排放污水事件
W...Y的主页 😊 代码仓库分享 💕 近日,世界发生了让人义愤填膺的时间——日本排放核污水。这件事情是那么的突然且不计后果,海洋是我们全人类共同的财产,而日本却想用自己一己私欲将全人类的安全置之度外,…...
Linux 查看当前目录大小
分析&回答 1. 查看当前目录下所有目录及子目录大小 du -h - . “.”代表当前目录下。也可以换成一个明确的路径 复制代码 2.查看当前文件目录各个文件夹大小 du -h --max-depth1 复制代码 查看指定目录 du -h --max-depth1 /path 复制代码 -h表示用K、M、G的人性化形…...

操作系统备考学习 day1 (1.1.1-1.3.1)
操作系统备考学习 day1 计算机系统概述操作系统的基本概念操作系统的概念、功能和目标操作系统的四个特征并发共享虚拟异步 操作系统的发展和分类操作系统的运行环境操作系统的运行机制 年初做了一个c的webserver 的项目,在学习过程中已经解除部分操作系统的知识&am…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...