AI图像行为分析算法 opencv
AI图像行为分析算法通过python+opencv深度学习框架对现场操作行为进行全程实时分析,AI图像行为分析算法通过人工智能视觉能够准确判断出现场人员的作业行为是否符合SOP流程规定,并对违规操作行为进行自动抓拍告警。OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV拥有包括300多个C函数的跨平台的中、高层API。它不依赖于其它的外部库――尽管也可以使用某些外部库。
Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。
OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令, 如今也提供对于C#、Ch、Ruby,GO的支持。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。
Adapter接口定义了如下方法:
public abstract void registerDataSetObserver (DataSetObserver observer)
Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。
public abstract void unregisterDataSetObserver (DataSetObserver observer)
通过调用unregisterDataSetObserver方法,反注册观察者。
public abstract int getCount () 返回Adapter中数据的数量。
public abstract Object getItem (int position)
Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。
public abstract long getItemId (int position)
获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。
public abstract boolean hasStableIds ()
hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。
public abstract View getView (int position, View convertView, ViewGroup parent)
getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。
相关文章:

AI图像行为分析算法 opencv
AI图像行为分析算法通过pythonopencv深度学习框架对现场操作行为进行全程实时分析,AI图像行为分析算法通过人工智能视觉能够准确判断出现场人员的作业行为是否符合SOP流程规定,并对违规操作行为进行自动抓拍告警。OpenCV是一个基于Apache2.0许可…...

MATLAB制图代码【第二版】
MATLAB制图代码【第二版】 文档描述 Code describtion: This code is version 2 used for processing the data from the simulation and experiment. Time : 2023.9.3 Author: PEZHANG 这是在第一版基础上,迭代出的第二版MATLAB制图代码,第二版的特点是…...

5.0: Dubbo服务导出源码解析
#Dubbo# 文章内容 Dubbo服务导出基本原理分析Dubbo服务注册流程源码分析Dubbo服务暴露流程源码分析服务导出的入口方法为ServiceBean.export(),此方法会调用ServiceConfig.export()方法,进行真正的服务导出。 1. 服务导出大概原理 服务导出的入口方法为ServiceBean.export…...

python自动化测试-自动化基本技术原理
1 概述 在之前的文章里面提到过:做自动化的首要本领就是要会 透过现象看本质 ,落实到实际的IT工作中就是 透过界面看数据。 掌握上面的这样的本领可不是容易的事情,必须要有扎实的计算机理论基础,才能看到深层次的本质东西。 …...
lodash 之 _.isEmpty
lodash.isEmpty() 是 Lodash 库中的一个函数,用于检查给定值是否为空。它可以用于判断对象、数组、字符串等不同类型的值是否为空。 const _ require(lodash);console.log(_.isEmpty(null)); // 输出: trueconsole.log(_.isEmpty(undefined)); // 输出: trueconso…...

layui数据表格实现表格中嵌套表格,并且可以折叠展开
效果: 思路: 1、最外层的表格先渲染,在done回调中向每个tr后面插入一个用来嵌套子级表格的tr。 tr的class和table的id需要用索引 i 关联 //向每一行tr后面追加显示子table的trlet trEles $(".layui-table-view[lay-idlist] tbody tr&…...

云端笔记系统-自动化测试
文章目录 1. 思维导图编写 Web 自动化测试用例2. 创建测试项目3. 根据思维导图设计【云端笔记】自动化测试用例3.1. 准备工具类3.2. 测试注册页面3.3. 测试登陆页面3.4. 测试添加博客页3.5. 测试我的博客列表页3.6. 测试修改博客页3.7. 测试博客列表页3.8. 测试博客详情页3.9. …...

将帅要避免五个方面的弱点:蛮干、怕死、好名、冲动、溺爱民众
将帅要避免五个方面的弱点:蛮干、怕死、好名、冲动、溺爱民众 【安志强趣讲《孙子兵法》第28讲】 【原文】 是故屈诸侯者以害,役诸侯者以业,趋诸侯者以利。 【注释】 趋:归附、依附。 【趣讲白话】 所以,用祸患威逼诸侯…...

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书成都理工大学图书馆
2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书成都理工大学图书馆...

vue的第3篇 第一个vue程序
一 vue的mvvm实践者 1.1 介绍 Model:模型层, 在这里表示JavaScript对象 View:视图层, 在这里表示DOM(HTML操作的元素) ViewModel:连接视图和数据的中间件, Vue.js就是MVVM中的View Model层的实现者 在M…...
线性求逆元
先暴力求出 1 n ! \frac 1 {n!} n!1往回推出 1 i ! \frac 1 {i!} i!1 1 i ( i − 1 ) ! i ! \Large \frac 1 i\frac{(i-1)!}{i!} i1i!(i−1)!...

第一章 USB应用笔记之USB初步了解
USB应用笔记之USB初步了解 文章目录 USB应用笔记之USB初步了解前言USB的优点:USB版本发展USB速度以及电气接口USB传输过程USB开发抓包工具:USB传输方式1.控制传输特点:2.中断传输的特点3. 批量传输的特点4.实时传输(同步传输)的特…...

小白入门python
建议用vscode进行代码学习 vscode下载地址:Download Visual Studio Code - Mac, Linux, Windows 左侧点击扩展安装python,右下角选择python版本,记得配置系统环境变量,python在系统(cmd)的版本由环境变量优先级决定,在编程软件中由自己选择解释器...

《Kubernetes部署篇:Ubuntu20.04基于containerd部署kubernetes1.24.17集群(多主多从)》
一、架构图 如下图所示: 二、环境信息 1、部署规划主机名K8S版本系统版本内核版本IP地址备注k8s-master-631.24.17Ubuntu 20.04.5 LTS5.15.0-69-generic192.168.1.63master节点 + etcd节点k8s-master-641.24.17Ubuntu 20.04.5 LTS5.15.0-69-generic192.168.1.64master节点 + …...

Adobe Illustrator 2023 for mac安装教程,可用。
Adobe Illustrator 是行业标准的矢量图形应用程序,可以为印刷、网络、视频和移动设备创建logos、图标、绘图、排版和插图。数以百万计的设计师和艺术家使用Illustrator CC创作,从网页图标和产品包装到书籍插图和广告牌。此版本是2023版本,适配…...

ElasticSearch(一)数据类型
ElasticSearch(一)数据类型 1.简述 Es数据类型分为基础数据类型和复杂类型数据,掌握ES数据类型才能进一步使用ES检索数据内容。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot…...

Spark-Core核心算子
文章目录 一、数据源获取1、从集合中获取2、从外部存储系统创建3、从其它RDD中创建4、分区规则—load数据时 二、转换算子(Transformation)1、Value类型1.1 map()_1.2 mapPartitions()1.3 mapPartitionsWithIndex(不常用)1.4 filterMap()_扁平化(合并流)…...
Linux和Windows下防火墙、端口和进程相关命令
🚀1 防火墙 1.1 firewall systemctl stop firewalld.service # 关闭防火墙 systemctl start firewalld.service # 开启防火墙 systemctl restart firewalld.service # 重启防火墙 systemctl status firewalld.service # 防火墙状态 firewall-cmd --reload # 重…...

2021年09月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试
C/C++编程(1~8级)全部真题・点这里 第1题:双端队列 定义一个双端队列,进队操作与普通队列一样,从队尾进入。出队操作既可以从队头,也可以从队尾。编程实现这个数据结构。 时间限制:1000 内存限制:65535 输入 第一行输入一个整数t,代表测试数据的组数。 每组数据的第一…...

【算法】滑动窗口
滑动窗口应用场景 关键词: 满足xxx条件(计算结果,出现次数,同时包含) 最长/最短 子串/子数组/子序列 例如:长度最小的子数组 滑动窗使用思路(寻找最长) 核心:左右双指…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...