官方推荐:6种Pandas读取Excel的方法
Pandas提供了多种读取Excel文件的方法,以下是官方推荐的6种方法:
1. 使用pd.read_excel()函数
这是最常用的方法,可以读取Excel文件,并将其转换为Pandas数据框。可以指定工作表名和列名的行号。
df = pd.read_excel('data.xlsx', sheet_name='Sheet1', header=0)
'data.xlsx'是要读取的Excel文件的文件路径。sheet_name='Sheet1'表示要读取的工作表名为’Sheet1’。如果省略该参数,默认读取第一个工作表。header=0表示将文件中的第0行作为列名。如果省略该参数,默认将文件中的第一行作为列名。
读取完Excel文件后,将其转换为Pandas数据框,并将结果赋值给变量df。可以使用df.head()函数查看前几行数据,或使用其他Pandas函数和方法进行数据处理和分析。
2. 使用pd.ExcelFile()和parse()函数
先使用pd.ExcelFile()函数创建一个Excel文件对象,然后使用parse()函数读取指定的工作表。
xlsx = pd.ExcelFile('data.xlsx')
df = xlsx.parse('Sheet1', header=0)
pd.ExcelFile('data.xlsx')创建了一个Excel文件对象xlsx,它代表了整个Excel文件。parse('Sheet1', header=0)函数用于从Excel文件对象xlsx中读取指定的工作表。'Sheet1'表示要读取的工作表名为’Sheet1’,header=0表示将文件中的第0行作为列名。
读取完Excel文件后,将其转换为Pandas数据框,并将结果赋值给变量df。可以使用df.head()函数查看前几行数据,或使用其他Pandas函数和方法进行数据处理和分析。
3. 使用pd.read_table()函数
可以读取Excel中的数据表,并指定分隔符(如制表符或逗号)。
df = pd.read_table('data.xlsx', sheet_name='Sheet1', delimiter='\t', header=0)
'data.xlsx'是Excel文件的路径。sheet_name='Sheet1'表示要读取的工作表名为’Sheet1’。delimiter='\t'指定数据表中的分隔符为制表符(‘\t’)。header=0表示将文件中的第0行作为列名。
读取完Excel文件后,将其转换为Pandas数据框,并将结果赋值给变量df。可以使用df.head()函数查看前几行数据,或使用其他Pandas函数和方法进行数据处理和分析。
4. 使用pd.read_csv()函数
可以读取以逗号分隔的Excel文件,可以指定分隔符、工作表名和列名的行号。
df = pd.read_csv('data.csv', sheet_name='Sheet1', delimiter=',', header=0)
'data.xlsx'是Excel文件的路径。sheet_name='Sheet1'表示要读取的工作表名为’Sheet1’。
读取完Excel文件后,将其转换为Pandas数据框,并将结果赋值给变量df。可以使用df.head()函数查看前几行数据,或使用其他Pandas函数和方法进行数据处理和分析。
5. 使用pd.read_html()函数
可以读取Excel文件中的HTML表格,并将其转换为Pandas数据框。
tables = pd.read_html('data.xlsx', sheet_name='Sheet1')
df = tables[0]
'data.xlsx'是Excel文件的路径。sheet_name='Sheet1'表示要读取的工作表名为’Sheet1’。
读取完Excel文件后,将其转换为Pandas数据框,并将结果赋值给变量df。可以使用df.head()函数查看前几行数据,或使用其他Pandas函数和方法进行数据处理和分析。
6. 使用pd.DataFrame.from_records()函数
可以读取Excel文件中的记录,并将其转换为Pandas数据框。
data = pd.ExcelFile('data.xlsx').parse('Sheet1').to_records()
df = pd.DataFrame.from_records(data)
'data.xlsx'是Excel文件的路径。sheet_name='Sheet1'表示要读取的工作表名为’Sheet1’。
读取完Excel文件后,将其转换为Pandas数据框,并将结果赋值给变量df。可以使用df.head()函数查看前几行数据,或使用其他Pandas函数和方法进行数据处理和分析。
以上是官方推荐的6种读取Excel文件的方法。根据具体的需求和Excel文件的格式,选择适合的方法来读取数据。
Pandas提供了读取Excel文件的方法,可以使用read_excel()函数来实现。以下是读取Excel文件的方法:
首先,需要确保已经安装了Pandas库。可以使用以下命令进行安装:
pip install pandas
接下来,导入Pandas库:
import pandas as pd
使用read_excel()函数来读取Excel文件。该函数的基本语法如下:
df = pd.read_excel('文件路径', sheet_name='工作表名', header=行号)
'文件路径':Excel文件的路径,可以是相对路径或绝对路径。'工作表名':要读取的工作表的名称。如果未指定,默认读取第一个工作表。header:指定要用作列名的行号。通常,第一行是列名,所以使用0作为行号。如果Excel文件没有行号作为列名,则可以设置为None。
以下是一个完整的示例:
import pandas as pd# 读取Excel文件
df = pd.read_excel('data.xlsx', sheet_name='Sheet1', header=0)# 打印数据框前几行
print(df.head())
以上代码将会读取名为"data.xlsx"的Excel文件中的"Sheet1"工作表,并将数据存储在名为"df"的数据框中。然后,通过head()函数打印数据框的前几行。
通过上述方法,您可以轻松地使用Pandas读取Excel文件并进行数据分析和处理。
相关文章:
官方推荐:6种Pandas读取Excel的方法
Pandas提供了多种读取Excel文件的方法,以下是官方推荐的6种方法: 1. 使用pd.read_excel()函数 这是最常用的方法,可以读取Excel文件,并将其转换为Pandas数据框。可以指定工作表名和列名的行号。 df pd.read_excel(data.xlsx, …...
Redis与Mysql区别
一、关系型数据库 mysql,pgsql,oracle ,sqlserver 支持连表关联查询(会有一些特定的语法特特性) 二、非关系型数据库 redis,mongodb,memcache (key-value) 三、关系型数据库与非关系型数据库的区别: 1&am…...
Black-Box Tuning for Language-Model-as-a-Service
本文是LLM系列的文章,针对《Black-Box Tuning for Language-Model-as-a-Service》的翻译。 语义模型即服务的黑盒调整 摘要1 引言2 背景3 方法4 实验5 讨论与未来工作 摘要 GPT-3等超大的预训练语言模型(PTM)通常作为服务发布。它允许用户设…...
通用的ARM64架构镜像
#此链接包含x86架构和ARM架构的pytorch镜像,镜像里面已下载好各种第三方库,GPU版本的pytorch可用。缺点:镜像有点大 测试环境:操作系统麒麟银河V10,ARM64处理器(cpu),显卡为T4显卡 …...
git大文件推送报错
报错信息 不多掰扯,直接上报错信息和截图 Delta compression using up to 8 threadsRPC failde; HTTP 413 curl 22 The requested URL returned error: 413 Request Entity Too Large从以上的报错信息不难看出推送仓库的时候,请求体过大,为…...
RDMA性能优化经验浅谈
一、RDMA概述 首先我们介绍一下RDMA的一些核心概念,当然了,我并不打算写他的API以及调用方式,我们更多关注这些基础概念背后的硬件执行方式和原理,对于这些原理的理解是能够写出高性能RDMA程序的关键。 Memory Region RDMA的网…...
day 44 | ● 309.最佳买卖股票时机含冷冻期 ● 714.买卖股票的最佳时机含手续费
309.最佳买卖股票时机含冷冻期 此外,在返回的时候,由于状态234都是卖出的状态,所以要比较其最大值进行返回。 func maxProfit(prices []int) int {dp : make([][]int, len(prices))dp[0] make([]int, 4)dp[0][0] -prices[0]for i : 1; i &…...
电子科大软件系统架构设计——系统分析与设计概述(含课堂作业、练习答案)
系统分析与设计概述 信息系统概述 what 信息系统是一种能够完成对业务数据进行采集、转换、加工、计算、分析、传输、维护等信息处理,并能就某个方面问题给用户提供信息服务的计算机应用系统。 组成 信息化基础设施(计算机、计算机网络、服务器、系统…...
【SpringMVC】@RequestMapping注解(详解)
文章目录 前言1、RequestMapping注解的功能2、RequestMapping注解的位置3、RequestMapping注解的value属性4、RequestMapping注解的method属性1、对于处理指定请求方式的控制器方法,SpringMVC中提供了RequestMapping的派生注解2、常用的请求方式有get,po…...
8.(Python数模)马尔科夫链预测
Python实现马尔科夫链预测 马尔科夫链原理 马尔科夫链是一种进行预测的方法,常用于系统未来时刻情况只和现在有关,而与过去无关。 用下面这个例子来讲述马尔科夫链。 如何预测下一时刻计算机发生故障的概率? 当前状态只存在0(故…...
什么是浏览器缓存(browser caching)?如何使用HTTP头来控制缓存?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 浏览器缓存和HTTP头控制缓存⭐ HTTP头控制缓存1. Cache-Control2. Expires3. Last-Modified 和 If-Modified-Since4. ETag 和 If-None-Match ⭐ 缓存策略⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击…...
谁需要了解学习RPA?什么地方可以使用RPA?
RPA(Robotic Process Automation)是一种通过软件机器人自动化执行特定任务和流程的技术。以下是一些需要了解RPA的人群: 企业决策者:企业决策者需要了解RPA的潜在收益和风险,以及如何将其纳入企业的数字化转型战略中。…...
Qt各个版本下载及安装教程(离线和非离线安装)
Qt各个版本下载链接: Index of /archive/qthttps://download.qt.io/archive/qt/ 离线安装 ,离线安装很无脑,下一步下一步就可以。 我离线下载 半个小时把2G的exe下载下来了...
使用爬虫代码获得深度学习目标检测或者语义分割中的图片。
问题描述:目标检测或者图像分割需要大量的数据,如果手动从网上找的话会比较慢,这时候,我们可以从网上爬虫下来,然后自己筛选即可。 代码如下(不要忘记安装代码依赖的库): # -*- co…...
代码随想录算法训练营第39天 | ● 62.不同路径 ● 63. 不同路径II
文章目录 前言一、62.不同路径二、63.不同路径II总结 前言 动态规划 一、62.不同路径 深搜动态规划数论 深搜: 注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点&#…...
《网站建设:从规划到发布的全过程详解》
一、引言 在数字时代,网站已经成为企业和个人在互联网上的重要存在。一个优质网站的建立需要周全的规划、设计、开发、测试和发布。本文将详细介绍网站建设的全过程,帮助读者了解和掌握网站建设的流程和方法。 二、网站建设的意义 网站建设具有以下意…...
1分钟实现 CLIP + Annoy + Gradio 文搜图+图搜图 系统
多模态图文搜索系统 CLIP 进行 Text 和 Image 的语义EmbeddingAnnoy 向量数据库实现树状结构索引来加速最近邻搜索Gradio 轻量级的机器学习 Web 前端搭建 文搜图 图搜图 CLIP图像语义提取功能!...
用树形dp+状压维护树上操作的计数问题:0902T3
发现操作数 k ≤ 6 k\le6 k≤6,可以考虑对操作进行状压。 然后找找性质,发现要么删掉一棵子树,要么进去该子树。可以视为每种操作有两种情况。 然后分讨一下当前该如何转移。 树形dp的顺序: 合并子树考虑当前往上的边的方向 …...
【python爬虫】批量识别pdf中的英文,自动翻译成中文上
不管是上学还是上班,有时不可避免需要看英文文章,特别是在写毕业论文的时候。比较头疼的是把专业性很强的英文pdf文章翻译成中文。我记得我上学的时候,是一段一段复制,或者碰到不认识的单词就百度翻译一下,非常耗费时间。本文提供批量识别pdf中英文的方法,后续文章实现自…...
Android笔记--Hilt
Hilt 是 Android 的依赖项注入库,可减少在项目中执行手动依赖项注入的样板代码。执行手动依赖项注入要求您手动构造每个类及其依赖项,并借助容器重复使用和管理依赖项。依赖注入的英文是Dependency Injection,简称DI,简单说一个类中使用的依赖…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
