当前位置: 首页 > news >正文

最适合 AI 的 Python Web 框架

e2985f9e4b290f53ece5cb0601779e49.png

迷途小书童的 Note

读完需要

4

分钟

速读仅需 2 分钟

1

   

简介

本文将介绍 Gradio 库,它是 Python 的一个 web 框架,可以帮助我们快速构建交互式 AI 应用。我们将了解 Gradio 的应用场景、基本原理、功能介绍,并通过一个代码示例来演示如何使用 Gradio。

2

   

应用场景

Gradio 是一个用于构建交互式 AI 应用的 Python 库。它可以帮助开发者快速将模型部署为易于使用的 Web 应用,无需编写复杂的前端代码。Gradio 的应用场景包括:

快速原型设计:通过 Gradio,开发者可以快速构建交互式原型,以便在项目早期收集反馈模型测试与评估:Gradio 可以帮助开发者更方便地测试和评估模型性能模型展示与分享:Gradio 可以将模型部署为 Web 应用,方便与他人分享和展示

3

   

基本原理

Gradio 的核心思想是将模型的输入和输出与 Web 界面的组件相连接。开发者只需定义模型的输入输出类型,Gradio 会自动生成相应的 Web 界面。用户可以通过这个界面与模型进行交互,而无需了解模型的内部实现。

4

   

功能介绍

下面是一些 Gradio 的常见功能

  • 支持多种输入输出类型:Gradio 支持文本、图像、音频等多种输入输出类型,可以满足不同场景的需求

  • 可自定义界面:开发者可以自定义界面的布局和样式,以适应不同的应用场景

  • 一键部署:Gradio 提供一键部署功能,可以将模型部署为 Web 应用,方便与他人分享和展示

  • 兼容主流深度学习框架:Gradio 可以与 TensorFlow、PyTorch 等主流深度学习框架无缝集成

5

   

代码示例

下面我们通过一个简单的代码示例来演示如何使用 Gradio。假设我们有一个将英文文本翻译成中文的模型,我们希望通过 Gradio 构建一个交互式应用

首先,安装 Gradio

pip install -U gradio

接下来,编写代码

import gradio as gr# 假设我们已经有了一个翻译模型
def translate(text):# 在这里调用你的翻译模型,将英文文本翻译成中文translated_text = "这是翻译后的中文文本"return translated_text# 定义输入输出类型
input_text = gr.inputs.Textbox(lines=5, placeholder="请输入英文文本")
output_text = gr.outputs.Textbox()# 创建 Gradio 界面
iface = gr.Interface(fn=translate, inputs=input_text, outputs=output_text, title="英文翻译成中文")# 启动 Gradio 界面
iface.launch()

运行这段代码后,Gradio 会自动生成一个交互式界面,我们在浏览器输入地址 http://127.0.0.1:7860 ( http://127.0.0.1:7860 )

5578697bb83a56c156f2364ad5151f66.jpeg

然后就可以在这个界面上输入英文文本,点击 Submit 按钮后,模型会返回翻译后的中文文本

4f2b05bdaf49716561d5817eaced2b0a.jpeg

由于我们没有跑真正的翻译模型,返回的是固定的一个文本。

6

   

参考资料

  • https://github.com/gradio-app/gradio

  • https://gradio.app/

7

   

免费社群

483f0736ab8ffb6def418ab6869bb9f1.jpeg

相关文章:

最适合 AI 的 Python Web 框架

迷途小书童的 Note 读完需要 4分钟 速读仅需 2 分钟 1 简介 本文将介绍 Gradio 库,它是 Python 的一个 web 框架,可以帮助我们快速构建交互式 AI 应用。我们将了解 Gradio 的应用场景、基本原理、功能介绍,并通过一个代码示例来演示如何使用 …...

算法通关村第十八关——回溯

回溯很大感觉就是多重递归,在递归的题目中,例如斐波那契数列,只需要考虑当前情况以及他的子情况。而在回溯中,要进行很多次递归,并且要对条件进行处理。 LeetCode257:给你一个二叉树的根节点root,按任意顺序&#xff…...

使用kafka还在依赖Zookeeper,kraft模式了解下

Kafka的Kraft模式 概述 ​ Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。其核心组件包含Producer、Broker、Consumer,以及依赖的Zookeeper集群。其中Zookeeper集群是Kafka用来负责集群元数据的管理、控制器…...

【100天精通Python】Day52:Python 数据分析_Numpy入门基础与数组操作

目录 1 NumPy 基础概述 1.1 NumPy的主要特点和功能 1.2 NumPy 安装和导入 2 Numpy 数组 2.1 创建NumPy数组 2.2 数组的形状和维度 2.3 数组的数据类型 2.4 访问和修改数组元素 3 数组操作 3.1 数组运算 3.2 数学函数 3.3 统计函数 4 数组形状操作 4.1 重塑数组形…...

Day01-Java基础语法

目录 1. 人机交互 1.1 什么是cmd? 1.2 如何打开CMD窗口? 1.3 常用CMD命令 1.4 CMD练习 1.5 环境变量 2. Java概述 1.1 Java是什么? 1.2下载和安装 1.2.1 下载 1.2.2 安装 1.2.3 JDK的安装目录介绍 1.3 HelloWorld小案例 2.3.1 …...

代码随想录二刷day06

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣242. 有效的字母异位词二、力扣349. 两个数组的交集三、力扣202. 快乐数四、力扣1两数之和 前言 一、力扣242. 有效的字母异位词 class Solution {pub…...

可扩展的Blender插件开发汇总

成熟的 Blender 3D 插件是令人惊奇的事情。作为 Python 和 Blender 的新手,我经常发现自己被社区中的人们创造的强大的东西弄得目瞪口呆。坦率地说,其中一些包看起来有点神奇,当自我怀疑或冒名顶替综合症的唠叨声音被打破时,很容易想到“如果有人能做出可以做xxx的东西就好…...

2023_Spark_实验二:IDEA安装及配置

一、下载安装包 链接:百度网盘 请输入提取码 所在文件夹:大数据必备工具--》开发工具(前端后端)--》后端 下载文件名称:ideaIU-2019.2.3.exe (喜欢新版本也可安装新版本,新旧版本会存在部分差异) IDEA …...

小赢科技,寻找金融科技核心价

如果说金融是经济的晴雨表,是通过改善供给质量以提高经济质量的切入口,那么金融科技公司,就是这一切行动的推手。上半年,社会经济活跃程度提高背后,金融科技公司既是奉献者,也是受益者。 8月29日&#xff0…...

NAT与代理服务器

1.DNS Domain Name System 是一整套从域名映射到IP的系统(把域名转化为IP地址) 2.域名简介 3.周鸿祎 傅盛 4.ICMP协议 用来网络故障排查原因 草图理解“位置” ping ICMP 是绕过TCP UDP传输协议的,没有端口号 traceroute 5.NAT技术 N…...

24.排序,插入排序,交换排序

目录 一. 插入排序 (1)直接插入排序 (2)折半插入排序 (3)希尔排序 二. 交换排序 (1)冒泡排序 (2)快速排序 排序:将一组杂乱无章的数据按一…...

Navicat16安装教程

注:因版权原因,本文已去除破解相关的文件和内容 1、在本站下载解压后即可获得Navicat16安装包和破解补丁,如图所示 2、双击“navicat160_premium_cs_x64.exe”程序,即可进入安装界面, 3、点击下一步 4、如图所示勾选“…...

【看表情包学Linux】初识文件描述符 | 虚拟文件系统 (VFS) 初探 | 系统传递标记位 | O_TRUNC | O_APPEND

爆笑教程《看表情包学Linux》👈 猛戳订阅!​​​​​ 💭 写在前面:通过上一章节的讲解,想必大家已对文件系统基本的接口有一个简单的了解,本章我们将继续深入讲解,继续学习系统传递标志位&…...

ssm+vue“魅力”繁峙宣传网站源码和论文

ssmvue“魅力”繁峙宣传网站源码和论文102 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身…...

Linux系统编程5(线程概念详解)

线程同进程一样都是OS中非常重要的部分,线程的应用场景非常的广泛,试想我们使用的视频软件,在网络不是很好的情况下,通常会采取下载的方式,现在你很想立即观看,又想下载,于是你点击了下载并且在…...

leetcode645. 错误的集合(java)

错误的集合 题目描述优化空间代码演示 题目描述 难度 - 简单 LC645 - 错误的集合 集合 s 包含从 1 到 n 的整数。不幸的是,因为数据错误,导致集合里面某一个数字复制了成了集合里面的另外一个数字的值,导致集合 丢失了一个数字 并且 有一个数…...

Pytest参数详解 — 基于命令行模式

1、--collect-only 查看在给定的配置下哪些测试用例会被执行 2、-k 使用表达式来指定希望运行的测试用例。如果测试名是唯一的或者多个测试名的前缀或者后缀相同,可以使用表达式来快速定位,例如: 命令行-k参数.png 3、-m 标记&#xff0…...

【python爬虫】3.爬虫初体验(BeautifulSoup解析)

文章目录 前言BeautifulSoup是什么BeautifulSoup怎么用解析数据提取数据 对象的变化过程总结 前言 上一关,我们学习了HTML基础知识,知道了HTML是一种用来描述网页的语言,又了解了HTML的基本结构。 认识了HTML中的常见标签和常见属性&#x…...

【Three.js + Vue 构建三维地球-Part One】

Three.js Vue 构建三维地球-Part One Vue 初始化部分Vue-cli 安装初始化 Vue 项目调整目录结构 Three.js 简介Three.js 安装与开始使用 实习的第一个任务是完成一个三维地球的首屏搭建,看了很多的案例,也尝试了用 Echarts 3D地球的模型进行构建&#xf…...

Power View

界面 切换可视化效果 对于已经上传到透视表的数据,选择power view,形成表格后。...

SQL查询本年每月的数据

--一、以一行数据的形式,显示本年的12月的数据,本示例以2017年为例,根据统计日期字段判断,计算总和,查询语句如下:selectsum(case when datepart(month,统计日期)1 then 支付金额 else 0 end) as 1月, sum…...

C++之struct和union对比介绍

C之struct和union对比介绍 在C中,struct和union都是用来定义自定义数据类型的关键字,但它们的作用略有不同。 首先了解一下它们的基本概念: struct(结构体):struct 是一个用户自定义的数据类型&#xff…...

微服务--SkayWalking(链路追踪:国产开源框架)

SkayWalking:分布式系统的应用程序性能监视工具 作用:分布式追踪、性能指标分析、应用、服务依赖分析; SkayWalking性能剖析: 我操,能够定位到某一个方法会有多慢。。。 通过Tid查看全局所有的日志信息&#xff08…...

在Windows 10上部署ChatGLM2-6B:掌握信息时代的智能对话

在Windows 10上部署ChatGLM2-6B:掌握信息时代的智能对话 硬件环境ChatGLM2-6B的量化模型最低GPU配置说明准备工作ChatGLM2-6B安装部署ChatGLM2-6B运行模式解决问题总结 随着当代科技的快速发展,我们进入了一个数字化时代,其中信息以前所未有的…...

LRU和LFU算法的简单实现

LRU #include <iostream> #include <unordered_map> #include <list> struct Node{int key;int value;Node(int key, int value):key(key),value(value){} }; class LruCache{ private:int maxCapacity;// 最大容量std::list<Node>CacheList;// 缓存链…...

OCR多语言识别模型构建资料收集

OCR多语言识别模型构建 构建多语言识别模型方案 合合&#xff0c;百度&#xff0c;腾讯&#xff0c;阿里这四家的不错 调研多家&#xff0c;发现有两种方案&#xff0c;但是大多数厂商都是将多语言放在一个字典里&#xff0c;构建1w~2W的字典&#xff0c;训练一个可识别多种语…...

倍增的经典题目:扩大区间、st表

1. 扩大区间 P4155 [SCOI2015] 国旗计划例题1&#xff1a;P4155 [SCOI2015] 国旗计划 计算能覆盖整个圆圈的最少区间&#xff0c;题目给定的所有区间互相不包含&#xff0c;按区间左端点排序后&#xff0c;区间的右端点也是单增的。 我们首先需要化圆为线&#xff0c;然后贪…...

LeetCode——和为K的子数组(中等)

题目 给你一个整数数组 nums 和一个整数 k &#xff0c;请你统计并返回 该数组中和为 k 的连续子数组的个数 。 示例 1&#xff1a; 输入&#xff1a;nums [1,1,1], k 2 输出&#xff1a;2示例 2&#xff1a; 输入&#xff1a;nums [1,2,3], k 3 输出&#xff1a;2 题解 …...

Truncation Sampling as Language Model Desmoothing

本文是LLM系列文章&#xff0c;针对《Truncation Sampling as Language Model Desmoothing》的翻译。 截断采样作为语言模型的去平滑性 摘要1 引言2 背景3 截断作为去平滑性4 方法5 实验与结果6 相关工作7 结论8 不足 摘要 来自神经语言模型的长文本样本可能质量较差。截断采…...

docker安装jenkins

运行jenkins docker run -d \--name jenkins \ --hostname jenkins \-u root \-p 29090:8080 \--restart always \-v D:\springcloud\学习\jekins\jenkins\jks_home:/var/jenkins_home \ jenkins/jenkins获取root登录密码 密码在jekins_home/secrets/initalAdminPassword文件…...