深度学习(前馈神经网络)知识点总结
用于个人知识点回顾,非详细教程
1.梯度下降
- 前向传播
特征输入—>线性函数—>激活函数—>输出

- 反向传播
根据损失函数反向传播,计算梯度更新参数


2.激活函数(activate function)
- 什么是激活函数?
在神经网络前向传播中,每一层的输出还需要经过激活函数再作为下一层的输入,即 a [ 1 ] = σ ( z [ 1 ] ) a^{[1]}=\sigma(z^{[1]}) a[1]=σ(z[1])
- 为什么需要激活函数?
如果没有非线性激活函数,模型的最终输出实际上只是输入特征x的线性组合

- 激活函数的分类
(1)sigmoid函数:除了输出层是一个二分类问题基本不会用
a = σ ( z ) = 1 1 + e − z a=\sigma(z)=\frac{1}{1+e^{-z}} a=σ(z)=1+e−z1
(2)tanh函数:数据平均值更接近0,几乎所有场合都适用
a = t a n h ( z ) = e z − e − z e z + e − z a=tanh(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}} a=tanh(z)=ez+e−zez−e−z
sigmoid函数和tanh函数两者共同的缺点是,在z特别大或者特别小的情况下,导数梯度或者函数斜率会变得特别小,最后就会接近于0,导致降低梯度下降的速度。
(3)Relu函数:修正线性单元,最常用的默认函数
a = m a x ( 0 , z ) a=max(0, z) a=max(0,z)
(4)Leaky Relu函数:进入负半区
a = m a x ( 0.01 z , z ) a=max(0.01z, z) a=max(0.01z,z)
sigmoid函数和tanh函数在正负饱和区的梯度都会等于0,而Relu和Leaky Relu可以避免梯度弥散现象,学习速度更快

3. 正则化
- 偏差和方差
高方差过拟合,高偏差欠拟合

- L1/L2正则化
在损失函数加上正则化,L1正则化更稀疏

- dropout正则化
根据概率随机删除节点

- 其它正则化方法

4.优化算法
- mini-batch梯度下降法
数据集分成多个子集来更新梯度

- 动量梯度下降(momentum)
参数更新时的梯度微分值计算方式采用指数加权平均


- RMSprop(root mean square prop)

- Adam
momentum+RMSprop

相关文章:
深度学习(前馈神经网络)知识点总结
用于个人知识点回顾,非详细教程 1.梯度下降 前向传播 特征输入—>线性函数—>激活函数—>输出 反向传播 根据损失函数反向传播,计算梯度更新参数 2.激活函数(activate function) 什么是激活函数? 在神经网络前向传播中&#x…...
点云从入门到精通技术详解100篇-点云信息编码(中)
目录 2.4.3 基于预测树结构的几何信息压缩算法 2.5 点云属性信息编码技术...
前端刷题-Promise系列
Promise系列 promise.all // 定义 Promise.all function (promises) {let count 0;let result [];return new Promise((resolve, reject) > {for (let i 0; i < promises.length; i) {promises[i].then((res) > {count;result[i] res;if (count promises.leng…...
3分钟:腾讯云免费SSL证书申请教程_免费HTTPS证书50张
2023腾讯云免费SSL证书申请流程,一个腾讯云账号可以申请50张免费SSL证书,免费SSL证书为DV证书,仅支持单一域名,申请腾讯云免费SSL证书3分钟即可申请成功,免费SSL证书品牌为TrustAsia亚洲诚信,腾讯云百科分享…...
如何快速成为一名优秀的python工程师?
随着人工智能的发展与应用,Python编程语言受到世界各界人士的关注,Python工程师也成为一个热门职业,就业薪资高,发展前景广阔。 Python是一门简单的编程语言,学习相对更加轻松容易,初学者很容易入门&#…...
Sqoop(二):Hive导出数据到Oracle
把Hive中的数据导入Oracle数据库。 1. 解释一下各行代码: sqoop export # 指定要从Hive中导出的表 --table TABLE_NAME # host_ip:导入oracle库所在的ip:导入的数据库 --connect jdbc:oracle:thin:HOST_IP:DATABASE_NAME # oracle用户账号 --username USERNAM…...
HTML数字倒计时效果附源码
HTML页面代码 <!DOCTYPE html> <html><head><meta http-equiv="content-type" content...
以udp协议创建通信服务器
概念图 创建服务器让A,B主机完成通信。 认识接口 socket 返回值:套接字,你可以认为类似fd 参数: domain->:哪种套接字,常用AF_INET(网络套接字)、AF_LOCAL(本地套接字)type->:发送数据类型,常用 …...
【数据结构】队列篇| 超清晰图解和详解:循环队列模拟、用栈实现队列、用队列实现栈
博主简介:努力学习的22级计算机科学与技术本科生一枚🌸博主主页: 是瑶瑶子啦每日一言🌼: 每一个不曾起舞的日子,都是对生命的辜负。——尼采 目录 一、 模拟实现循环队列二、用栈实现队列⭐三、225. 用队列实现栈 一、…...
js+html实现打字游戏v2
实现逻辑,看jshtml实现打字游戏v1,在此基础之上增加了从文件读取到的单词,随机选取10个单词。 效果演示 上代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8">&l…...
Python之作业(一)
Python之作业(一) 作业 打印九九乘法表 用户登录验证 用户依次输入用户名和密码,然后提交验证用户不存在、密码错误,都显示用户名或密码错误提示错误3次,则退出程序验证成功则显示登录信息 九九乘法表 代码分析 先…...
uni-app 之 v-on:click点击事件
uni-app 之 v-on:click点击事件 image.png <template><!-- vue2的<template>里必须要有一个盒子,不能有两个,这里的盒子就是 view--><view>--- v-on:click点击事件 ---<view v-on:click"onclick">{{title}}<…...
迁移学习:实现快速训练和泛化的新方法
文章目录 迁移学习的原理迁移学习的应用快速训练泛化能力提升 迁移学习的代码示例拓展应用与挑战结论 🎉欢迎来到AIGC人工智能专栏~迁移学习:实现快速训练和泛化的新方法 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博…...
蓝队追踪者工具TrackAttacker,以及免杀马生成工具
蓝队追踪者工具TrackAttacker,以及免杀马生成工具。 做过防守的都知道大HW时的攻击IP量,那么对于这些攻击IP若一个个去溯源则显得效率低下,如果有个工具可以对这些IP做批量初筛是不是更好? 0x2 TrackAttacker获取 https://githu…...
ELK日志收集系统(四十九)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、概述 二、组件 1. elasticsearch 2. logstash 2.1 工作过程 2.2 INPUT 2.3 FILETER 2.4 OUTPUTS 3. kibana 三、架构类型 3.1 ELK 3.2 ELKK 3.3 ELFK 3.5 EF…...
Linux知识点 -- Linux多线程(四)
Linux知识点 – Linux多线程(四) 文章目录 Linux知识点 -- Linux多线程(四)一、线程池1.概念2.实现3.单例模式的线程池 二、STL、智能指针和线程安全1.STL的容器是否是线程安全的2.智能指针是否是线程安全的 三、其他常见的各种锁…...
Java设计模式:四、行为型模式-07:状态模式
文章目录 一、定义:状态模式二、模拟场景:状态模式2.1 状态模式2.2 引入依赖2.3 工程结构2.4 模拟审核状态流转2.4.1 活动状态枚举2.4.2 活动信息类2.4.3 活动服务接口2.4.4 返回结果类 三、违背方案:状态模式3.0 引入依赖3.1 工程结构3.2 活…...
很多应用都是nginx+apache+tomcat
nginx 负责负载均衡,将大量的访问量平衡分配给多个服务器 apache 是用来处理静态html、图片等资源,在对HTML解析、响应等方面比tomcat效率更高。 tomcat 处理JSP等内容,进行后台业务操作。 upstream bbb.com.cn{ server 192.168.10.1:80 ;…...
原型模式:复制对象的技巧
欢迎来到设计模式系列的第六篇文章!在前面的几篇文章中,我们已经学习了一些常见的设计模式,今天我们将继续探讨另一个重要的设计模式——原型模式。 原型模式简介 原型模式是一种创建型设计模式,它主要用于复制对象。原型模式通…...
ClickHouse进阶(五):副本与分片-1-副本与分片
进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容! 🏡个人主页:含各种IT体系技术,IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客 📌订阅…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
