当前位置: 首页 > news >正文

leetCode动态规划“不同路径II”

迷宫问题是比较经典的算法问题,一般可以用动态规划、回溯等方法进行解题,这道题目是我昨晚不同路径这道题趁热打铁继续做的,思路与原题差不多,只是有需要注意细节的地方,那么话不多说,直接上coding和解析!

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。
在这里插入图片描述

解析

如果做过类似迷宫问题的读者,对于这道题目的思路想必也会第一时间想到仍然使用动态规划的思路去解答,但是对于路径中的障碍物在这里却需要着重的单独讨论,因为有了障碍物,那么对于部分目标点的路径数会发生改变。此题目中需要考虑的特殊位置有如下图所示;
在这里插入图片描述
所画图给出了一种情况下的各个点下的路径数,可以看到,对于紫色笔给出的新的当前的节点路径数,仍满足原始状态下的dp[i][j] = dp[i-1][j]+dp[i][j-1]的动态递推式(但对于有障碍的节点不满足,那么障碍节点可达到路径数直接为0),对于迷宫问题,当前节点的可通行路线是由当前节点的左侧节点和正上方节点的可通过路径数相加得到,那对于左上方存在障碍的情况,当前节点的可通过数就需要变化。如下图所示。
在这里插入图片描述
这是相对于原始题目的第一处变化,考虑了障碍物,那么就得讨论一下障碍物在某些特殊位置下的特殊情况,比如障碍物在初始行、列上的时候,比如:
在这里插入图片描述
这种情况下,我们就不能单纯的只能把障碍物所处的位置上的路径数置为0,而是要把往后的那一列/一行上的数据都要置为0,为什么,因为机器人只能向下或者向右走,所以,对于初始行、列上的障碍物往后的点,机器人是无法到达的!!!
当然,还剩下最后一个情况,起点就有障碍物,那直接return 0咯~

代码

1.初始化dp数组

//初始化dp数组,我这里全给的-1,方便后续判别障碍物、无障碍物和路径数
int dp[110][110];for(int i=0;i<110;i++){for(int j =0;j<110;j++){dp[i][j] = -1;}}

2.根据地图,将地图中障碍物所处对应的dp数组位置置路径数为0

for(int i=0;i<obstacleGrid.size();i++){for(int j=0;j<obstacleGrid[i].size();j++){if(i == 0 && j ==0){//起点是障碍物if(obstacleGrid[i][j] == 1){return 0;}}if(i == 0){//障碍物在初始行上if(obstacleGrid[i][j] == 1){for(int m = j;m<obstacleGrid[i].size();m++){dp[i][m] = 0;}}}if(j == 0){//障碍物在初始列上if(obstacleGrid[i][j] == 1){dp[i][j] = 0;for(int x = i+1;x<obstacleGrid.size();x++){dp[x][j] = 0;}}}else if(i != 0 && j!= 0){//障碍物不在特殊位置上,那直接对应位置dp设置为0即可if(obstacleGrid[i][j] == 1){dp[i][j] = 0;}}}}

3.计算dp数组

for(int i=0;i<obstacleGrid.size();i++){for(int j=0;j<obstacleGrid[i].size();j++){if(i == 0 || j == 0){if(dp[i][j] == -1){dp[i][j] = 1;}}if(i != 0 && j != 0){if(dp[i][j] != 0){dp[i][j] = dp[i-1][j] + dp[i][j-1];}}}}

4. 完整代码和结果

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {// 跟第一种情况是一样的,只是对于地图中有障碍物的地方,对应的dp数组置为1int dp[110][110];for(int i=0;i<110;i++){for(int j =0;j<110;j++){dp[i][j] = -1;}}for(int i=0;i<obstacleGrid.size();i++){for(int j=0;j<obstacleGrid[i].size();j++){if(i == 0 && j ==0){if(obstacleGrid[i][j] == 1){return 0;}}if(i == 0){if(obstacleGrid[i][j] == 1){for(int m = j;m<obstacleGrid[i].size();m++){dp[i][m] = 0;}// break;}}if(j == 0){if(obstacleGrid[i][j] == 1){dp[i][j] = 0;for(int x = i+1;x<obstacleGrid.size();x++){dp[x][j] = 0;}// break;}}else if(i != 0 && j!= 0){if(obstacleGrid[i][j] == 1){dp[i][j] = 0;}}}}for(int i=0;i<obstacleGrid.size();i++){for(int j=0;j<obstacleGrid[i].size();j++){if(i == 0 || j == 0){if(dp[i][j] == -1){dp[i][j] = 1;}}if(i != 0 && j != 0){if(dp[i][j] != 0){dp[i][j] = dp[i-1][j] + dp[i][j-1];}}// else{//     dp[i][j] = dp[i-1][j] + dp[i][j-1];// }}}cout<<dp[obstacleGrid.size()-1][obstacleGrid[0].size()-1];return dp[obstacleGrid.size()-1][obstacleGrid[0].size()-1];}
};

在这里插入图片描述

总结

个人感觉,这类题目是十分具有代表性的动态规划算法题 ,为什么这么说,因为动态规划要满足最优子结构,而恰恰这类题的子结构十分清晰,就比如我要知道当前位置有几种路径可以到达,就可以直接从我的前一步,也就是我的左边那一步和正上面的那一步就能到达,也就是我的左边和上面是与我当前可联通的,那么就直接得到了我当前的可通行路径数。有的人可能会说,那这样的话,应该是两者之和再加1才是最终的路径数呀?
其实不然,我最开始也陷入了这样的思维模式中去了,而其实应该这么想,我们所要求的是路径,而不是步数,讨论的不是走了几步,而是有几种到达的方法,换言之就是,只要我能到达左边那个位置或者上面那个位置,那么我一定能够到达当前所求的这个位置,那么也就说明,到达上面/左边位置的路径均能到达我当前的位置,那么两个地方的路径数之和就是到达当前位置的路径数之和~ 这里就不贴图了 ,如果文字描述不清楚,可以结合上面的xyz那张图(也就是所有图中的第三张图)进行结合理解。
动态规划变种很多,前些时候做了些公司面试笔试题 ,发现很多题可以用动态规划来做,但是不得其解,文中的题目是比较清晰的,容易推出动态规划递推式的类型,对于一些变种,还需要多做多总结!欢迎各位读者在评论区进行讨论,有更好的方法我也很愿意与您交流学习!
如果文章对您有帮助,可以点个小赞哦~

相关文章:

leetCode动态规划“不同路径II”

迷宫问题是比较经典的算法问题&#xff0c;一般可以用动态规划、回溯等方法进行解题&#xff0c;这道题目是我昨晚不同路径这道题趁热打铁继续做的&#xff0c;思路与原题差不多&#xff0c;只是有需要注意细节的地方&#xff0c;那么话不多说&#xff0c;直接上coding和解析&a…...

100天精通Python(可视化篇)——第99天:Pyecharts绘制多种炫酷K线图参数说明+代码实战

文章目录 专栏导读一、K线图介绍1. 说明2. 应用场景 二、配置说明三、K线图实战1. 普通k线图2. 添加辅助线3. k线图鼠标缩放4. 添加数据缩放滑块5. K线周期图表 书籍推荐 专栏导读 &#x1f525;&#x1f525;本文已收录于《100天精通Python从入门到就业》&#xff1a;本专栏专…...

哈希表与有序表

哈希表与有序表 Set结构 key Map结构 key-value 哈希表 哈希表的时间复杂度都是常数项级别的&#xff0c;但常数较大 增删改查的时间都是常数级别的&#xff0c;与数据量无关 当哈希表存储的值是基础数据类型&#xff08;Integer - int&#xff09;&#xff0c;哈希表中内…...

什么时候使用RPA?如何使用RPA?需要什么样的硬件支持?需要安装哪些软件?

RPA&#xff08;Robotic Process Automation&#xff09;是一种用于自动化执行重复性任务的技术&#xff0c;它可以帮助企业提高工作效率&#xff0c;降低人力成本&#xff0c;并减少人为错误。RPA适用于各种行业和场景&#xff0c;例如财务、人力资源、客户服务、IT运维等。 …...

R语言入门——line和lines的区别

目录 0 引言一、 line()二、 lines() 0 引言 首先&#xff0c;从直观上看&#xff0c;lines比line多了一个s&#xff0c;但它们还是有很大的区别的&#xff0c;下面将具体解释这个两个函数的区别。 一、 line() 从R语言的帮助文档中找到&#xff0c;line()的使用&#xff0c…...

C语言:static关键字的使用

1.static修饰局部变量 这是static关键字使用最多的情况。我们知道局部变量是在程序运行阶段在栈上创建的&#xff0c;但是static修饰的局部变量是在程序编译阶段在代码段&#xff08;静态区&#xff09;创建的。所以在static修饰的变量所在函数执行结束后该变量依然存在。 //…...

AUTOSAR知识点 之 ECUM (三):ECUM的ISOLAR-AB配置及代码解析

目录 1、概述 2、ISOLAR-AB配置 2.1、EcuMGeneral 2.2、EcuMConfiguration 2.2.1、EcuMDefaultShutdownTarget 2.2.2、EcuMDriverInitListOne...

2023年MySQL-8.0.34保姆级安装教程

重点放前面&#xff1a;演示环境为windows环境。 MySQL社区版本安装教程如下&#xff1a; 一、MySQL安装包下载二、安装配置设置三、配置环境变量 大体分为3个步骤&#xff1a;①安装包的下载&#xff1b;②安装配置设置&#xff1b;③配置环境变量 一、MySQL安装包下载 下载官…...

ElasticSearch入门

一、基本命令_cat 1、查看节点信息 http://192.168.101.132:9200/_cat/nodes2、查看健康状况 http://192.168.101.132:9200/_cat/health3、查看主节点的信息 http://192.168.101.132:9200/_cat/master4、查看所有索引 http://192.168.101.132:9200/_cat/indices二、索引一…...

RocketMQ的Broker

1 Broker角色 Broker角色分为ASYNC_MASTER (异步主机)、SYNC_MASTER (同步主机)以及SLAVE (从机)。如果对消息的可靠性要求比较严格&#xff0c;可以采用SYNC_MASTER加SLAV E的部署方式。如果对消息可靠性要求不高&#xff0c;可以采用ASYNC_MASTER加ASL AVE的部署方式。如果只…...

使用Puppeteer进行游戏数据可视化

导语 Puppeteer是一个基于Node.js的库&#xff0c;可以用来控制Chrome或Chromium浏览器&#xff0c;实现网页操作、截图、测试、爬虫等功能。本文将介绍如何使用Puppeteer进行游戏数据的爬取和可视化&#xff0c;以《英雄联盟》为例。 概述 《英雄联盟》是一款由Riot Games开…...

【Flask】from flask_sqlalchemy import SQLAlchemy报错

【可能出现的情况】 1、未安装 Flask-SQLAlchemy&#xff1a; 在使用 flask_sqlalchemy 之前&#xff0c;你需要确保已经通过 pip 安装了 Flask-SQLAlchemy。可以通过以下命令安装它&#xff1a; pip install Flask-SQLAlchemy 2、包名大小写问题&#xff1a; Python 是区分大…...

索引简单概述(SQL)

一、什么是索引&#xff1f; 索引是一种特殊的文件&#xff08;InnoDB数据表上的索引是表空间的一个组成部分&#xff09;&#xff0c;他们包含着对数据表里所有记录的引用指针。 索引是一种数据结构。数据库索引&#xff0c;是数据库管理系统中一个排序的数据结构&#xff0…...

union all 和 union 的区别,mysql union全连接查询

602. 好友申请 II &#xff1a;谁有最多的好友(力扣mysql题,难度:中等) RequestAccepted 表&#xff1a; ------------------------- | Column Name | Type | ------------------------- | requester_id | int | | accepter_id | int | | accept_date …...

UDP和TCP的区别

UDP (User Datagram Protocol) 和 TCP (Transmission Control Protocol) 是两种常见的传输层协议。它们在设计和用途上有很大的区别&#xff0c;以下是它们的主要差异&#xff1a; 连接性: TCP: 是一个连接导向的协议。它首先需要建立连接&#xff0c;数据传输完毕后再终止连接…...

阿里云 MSE 助力开迈斯实现业务高增长背后带来的服务挑战

开迈斯新能源科技有限公司于 2019 年 5 月 16 日成立&#xff0c;目前合资股东分别为大众汽车&#xff08;中国&#xff09;投资有限公司、中国第一汽车股份有限公司、一汽-大众汽车有限公司[增资扩股将在取得适当监督&#xff08;包括反垄断&#xff09;审批后完成]、万帮数字…...

消灭怪物的最大数量【力扣1921】

一、题目分析 需要满足的条件&#xff1a; 只能在每分钟的开始使用武器武器能杀死距离城市最近的怪兽怪兽到达城市就会输掉游戏 游戏最优策略&#xff1a;我们可以在每分钟的开始都使用一次武器&#xff0c;用来杀死距离城市最近的怪兽。这样可以在力所能及的范围内&#xf…...

数据结构之算法

算法的基本概念 计算机解题的过程实际上是在实施某种算法&#xff0c;这种算法称为计算机算法 算法的基本要素 一个算法是由两种基本要素组成&#xff1a;一是对数据对象的运算和操作&#xff1b;二是算法的控制结构 算法中对数据的运算和操作 在一般计算机系统中&#xf…...

MyBatis与MyBatis-Plus的分页以及转换

一、介绍 MyBatis和MyBatis-Plus都是Java持久化框架&#xff0c;用于简化数据库访问和操作。它们提供了面向对象的方式来管理关系型数据库中的数据。 MyBatis是一个轻量级的持久化框架&#xff0c;通过XML或注解配置&#xff0c;将SQL语句与Java对象进行映射&#xff0c;使开…...

TCP/IP网络编程(二) 套接字协议及其数据传输特性

文章目录 套接字协议及其数据传输特性关于协议创建套接字协议族套接字类型1&#xff1a;面向连接的套接字&#xff08;SOCK_STREAM&#xff09;套接字类型2&#xff1a;面向消息的套接字&#xff08;SOCK_DGRAM&#xff09;协议的最终选择面向连接的套接字&#xff1a;TCP套接字…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...