LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略
LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略
导读:2023年08月25日(北京时间),Meta发布了Code Llama,一个可以使用文本提示生成代码的大型语言模型(LLM)。Code Llama是最先进的公开可用的LLM代码任务,并有潜力使工作流程更快,更有效的为当前的开发人员和降低进入门槛的人正在学习代码。Code Llama有潜力作为一种生产力和教育工具来帮助程序员编写更健壮、文档更完善的软件。
Code Llama在Llama 2的基础上增强了编码能力。它可以从代码和自然语言提示(例如,“给我写一个输出斐波那契数列的函数。”)中生成代码和关于代码的自然语言。它也可以用于代码完成和调试。它支持许多当今最流行的语言,包括Python、c++、Java、PHP、Typescript (Javascript)、c#和Bash。
>> Code Llama是一个开源的、最先进的LLM,能够从代码和自然语言提示中生成代码和关于代码的自然语言。它专注于生成代码和理解自然语言代码说明,其性能优于当前公开的其他代码生成LLM,为编程带来支持,其开源训练方法有助于社区建立更多创新工具。
>> Code Llama有三个尺寸的版本,参数量分别为7B、13B和34B,并支持多种编程语言。它稳定支持了最高10万个token的上下文生成。这三个参数版本的Code Llama模型都使用了500B的代码tokens和代码相关数据进行训练。7B和13B版本的模型还经过了FIM(fill-in-the-middle)训练,可以将代码插入到现有代码中,支持开箱即用的代码补全等任务。不同的服务和延迟要求可以选择适合的模型版本。例如,7B模型适合在单个GPU上运行,而34B模型提供了更好的编码辅助和最佳结果,但速度较慢。对于低延迟任务,比如实时代码补全,较小的7B和13B模型速度更快。
>> Code Llama建立在Llama 2的基础上,并通过在代码特定数据集上进行进一步训练来提升编码能力。除了基础模型外,还有针对Python优化的Code Llama - Python和理解自然语言指令优化的Code Llama - Instruct版本。在代码生成基准测试中,Code Llama表现优于其他公开可用的代码专用语言模型,性能与ChatGPT相当。
目录
Code Llama的简介
1、《Code Llama: Open Foundation Models for Code》翻译与解读
2、模型评估效果对比:HumanEval、MBPP、MHEval
3、基于Code Llama的衍生模型
(1)、Phind团队:Phind-CodeLlama-34B-v1、Phind-CodeLlama-34B-Python-v1
(2)、WizardLM团队:WizardCoder
Code Llama的安装
1、模型部署与推理
第1步,获取Meta 官网授权
第2步,sh脚本下载
第3步,模型推理
2、预训练
3、代码填充
4、微调指令模型
Code Llama的使用方法
Code Llama的简介

2023年08月25日,Meta发布了基于的Llama2用于专攻代码生成的基础模型 Code Llama。Code Llama 是基于 Llama 2 的一系列面向代码的大型语言模型,提供了在开放模型中领先的性能,填充能力,支持大型输入上下文,以及用于编程任务的零-shot指令跟随能力。
该项目提供多个版本以覆盖广泛的应用领域:基础模型(Code Llama),Python 专用模型(Code Llama - Python),以及指令跟随模型(Code Llama - Instruct),分别具有7B、13B和34B的参数。所有模型都是在16k标记的序列上进行训练的,并在最多100k标记的输入上显示出改进。7B和13B的 Code Llama 和 Code Llama - Instruct 变体支持基于周围内容的填充。
Code Llama 是通过对 Llama 2 进行代码的更高采样来进行微调开发的。与 Llama 2 一样,我们对模型的微调版本应用了相当大的安全措施。有关模型训练、架构和参数、评估、负责人工智能和安全的详细信息,请参阅我们的研究论文。由 Llama Materials 的代码生成功能生成的输出,包括 Code Llama,在内可能受第三方许可证的约束,包括但不限于开源许可证。
我们正在释放大型语言模型的强大能力,我们的最新版本 Code Llama 现在可以让个人、创作者、研究人员和各个规模的企业获得使用权限,以便他们可以负责地进行实验、创新和扩展他们的想法。此发布包括预训练和微调 Llama 语言模型的模型权重和初始代码,参数范围从7B到34B。该存储库旨在作为一个最小的示例,用于加载 Code Llama 模型并进行推理。

Code Llama 是一项带有潜在风险的新技术。到目前为止进行的测试未能覆盖所有情况。为了帮助开发人员应对这些风险,我们已创建了《负责任使用指南》。更多详细信息可以在我们的研究论文中找到。
GitHub官网:GitHub - facebookresearch/codellama: Inference code for CodeLlama models
论文地址:https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/
官网文章:https://ai.meta.com/blog/code-llama-large-language-model-coding/
1、《Code Llama: Open Foundation Models for Code》翻译与解读

| 摘要 | 我们发布了Code Llama,这是一系列基于Llama 2的面向代码的大型语言模型,具有开放模型中最先进的性能、填充能力、支持大型输入上下文以及零-shot指令跟随能力,可用于编程任务。我们提供多种版本以覆盖广泛的应用领域:基础模型(Code Llama)、Python专用模型(Code Llama - Python)和指令跟随模型(Code Llama - Instruct),分别具有7B、13B和34B个参数。所有模型都是在16k个标记的序列上进行训练,并在最多100k个标记的输入上显示出改进效果。7B和13B的Code Llama和Code Llama - Instruct变种支持基于周围内容的填充。Code Llama在几个代码基准测试中达到了开放模型的最先进性能,分别在HumanEval和MBPP上获得了53%和55%的得分。值得注意的是,Code Llama - Python 7B在HumanEval和MBPP上的表现超过了Llama 2 70B,而我们的所有模型在MultiPL-E上都优于其他公开可用的模型。我们以宽松的许可证发布Code Llama,既允许研究使用,也允许商业使用。 |
| 结论 | 我们发布了一系列专注于代码的Llama 2模型,称为Code Llama,包含三个主要变种,我们以三种规模(7B、13B和34B个参数)发布:Code Llama、Code Llama - Python和Code Llama - Instruct。考虑到实际应用,我们训练了7B和13B的模型以支持填充,并让所有模型能够利用大型上下文。我们在推理中测试它们在最多100K个标记(图4a)的情况下的稳定性。大型上下文微调和填充在标准基准测试中(表10)的基于从左到右的代码生成基准测试中有一定的代价,这些测试都基于短序列(即函数级别)。尽管如此,我们的30B模型在标准Python完成基准测试中是公开模型中最先进的,而我们的其他模型与具有相似参数数量的模型相比具有竞争力。在多语言基准测试中,即使是我们最小的模型(Code Llama 7B)也优于其他任何公开模型。 Code Llama - Instruct模型经过训练,为Code Llama提供了零-shot指令能力。在这种进一步的微调中,我们在一定程度上提炼了Llama 2-Chat,不仅注重更直接的帮助(图5c),还努力提供更安全的模型供使用和部署(第4节)。遵循指令并过于安全可能会在评估中损失一些得分(例如表2中34B模型在HumanEval上的情况),如图14所示。需要进一步的工作让LLM能够理解上下文和指令中的细微差别。 |
2、模型评估效果对比:HumanEval、MBPP、MHEval
Code Llama表现优异

3、基于Code Llama的衍生模型
(1)、Phind团队:Phind-CodeLlama-34B-v1、Phind-CodeLlama-34B-Python-v1

Phind 团队利用内部Phind数据集调优CodeLlama-34B和CodeLlama-34B-Python模型,在HumanEval上超越GPT-4的表现。在该内部数据集上,两模型分别获得67.6%和69.5%的通过率,高于原始模型的48.8%和53.7% 。调优后模型Phind-CodeLlama-34B-v1和Phind-CodeLlama-34B-Python-v1在HumanEval上分别获得67.6%和69.5%的通过率。显然都超越了原始 GPT-4 的 67%。
| 时间 | 2023年8月27日(北京时间) |
| 作者 | Phind团队 |
| 地址 | 地址:https://www.phind.com/blog/code-llama-beats-gpt4 |
| 原文章 | 通过对CodeLlama-34B和CodeLlama-34B-Python进行微调,我们在内部的Phind数据集上取得了令人瞩目的成绩。CodeLlama-34B在HumanEval上的一次通过率为48.8%,而CodeLlama-34B-Python则为53.7%。根据OpenAI在三月份的官方技术报告,GPT-4的通过率为67%。为确保结果的有效性,我们对数据集应用了OpenAI的去污染方法。 昨天发布的CodeLlama模型在HumanEval上展现出了出色的性能。 >> Phind-CodeLlama-34B-v1在HumanEval上的一次通过率为67.6%。 >> Phind-CodeLlama-34B-Python-v1在HumanEval上的一次通过率为69.5%。 我们将这两个模型在一个拥有大约80,000个高质量编程问题和解决方案的专有数据集上进行了微调。与HumanEval在结构上不同的是,该数据集采用了指令-答案对而不是代码补全示例。 我们对Phind模型进行了两个时期的训练,总共约160,000个示例。我们没有使用LoRA,这两个模型都经过了本机的微调。我们使用DeepSpeed ZeRO 3和Flash Attention 2,在32个A100-80GB的GPU上进行训练,序列长度为4096个标记,训练时间为三个小时。 此外,我们还应用了OpenAI的去污染方法来确保结果的有效性,并且没有发现任何受污染的示例。该方法如下所示: >> 对于每个评估示例,我们随机抽样了三个50个字符的子字符串,如果示例少于50个字符,则使用整个示例。 >> 如果任何抽样的子字符串是处理过的训练示例的子字符串,则认为存在匹配。 有关去污染方法的更多信息,请参阅OpenAI技术报告附录C。下面是我们在微调模型中实现的一次通过率得分: >> Phind-CodeLlama-34B-v1在HumanEval上的一次通过率为67.6%。 >> Phind-CodeLlama-34B-Python-v1在HumanEval上的一次通过率为69.5%。 |
(2)、WizardLM团队:WizardCoder

WizardLM 团队发布了基于Code Llama的最新WizardCoder-34B。WizardCoder-34B在HumanEval上的一次通过率(pass@1)达到了惊人的 73.2%,超越了原始 GPT-4、ChatGPT-3.5 以及 Claude 2、Bard。
为了开发我们的WizardCoder模型,我们首先采用了Evol-Instruct方法,专门针对编码任务进行了适应。这包括将提示信息定制为与代码相关的指令领域。随后,我们使用新创建的指令跟随训练集对Code LLama的模型进行了微调,包括StarCoder或Code LLama。
| 时间 | 2023年8月27日(北京时间) |
| 作者 | WizardLM 团队 |
| 地址 | GitHub地址:https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder 测试地址:WizardCoder-Python-34B-V1.0 |
Code Llama的安装
1、模型部署与推理
第1步,获取Meta 官网授权
为了下载模型权重和分词器,请访问 Meta AI 网站并接受我们的许可协议。
一旦您的请求获得批准,您将收到一封带有签名的电子邮件链接。
第2步,sh脚本下载
| 下载脚本 | 然后运行 download.sh 脚本,在提示时传递提供的 URL 开始下载。请确保复制 URL 文本本身,不要使用右键单击 URL 时的“复制链接地址”选项。如果复制的 URL 文本以 https://download.llamameta.net开头,则复制正确。如果复制的 URL 文本以 https://l.facebook.com开头,则复制错误。 |
| 先决条件 | 先决条件:确保您已安装 wget 和 md5sum。然后运行脚本:bash download.sh。 请注意,链接在24小时后和一定数量的下载后会过期。如果您开始看到诸如 403:Forbidden 的错误,您始终可以重新请求链接。 |
| 设置 | 在具有 PyTorch / CUDA 的 conda 环境中,克隆存储库并在顶级目录中运行: pip install -e . |
第3步,模型推理
不同的模型需要不同的模型并行(MP)值
| Model | MP |
| 7B | 1 |
| 13B | 2 |
| 34B | 4 |
所有模型都支持长达100,000标记的序列长度,但我们根据 max_seq_len 和 max_batch_size 值预先分配缓存。因此根据您的硬件和用例设置这些值。
2、预训练
Code Llama 和 Code Llama - Python 模型没有经过微调以遵循指令。它们应该通过提示来获取期望的答案,即提示的自然延续。请参考 example_completion.py 查看一些示例。为了说明,查看下面的命令,以使用 CodeLlama-7b 模型运行它(nproc_per_node 需要设置为 MP 值):
torchrun --nproc_per_node 1 example_completion.py
--ckpt_dir CodeLlama-7b/
--tokenizer_path CodeLlama-7b/tokenizer.model
--max_seq_len 128 --max_batch_size 4
预训练的代码模型包括:Code Llama 模型 CodeLlama-7b、CodeLlama-13b、CodeLlama-34b,以及 Code Llama - Python 模型 CodeLlama-7b-Python、CodeLlama-13b-Python、CodeLlama-34b-Python。
3、代码填充
Code Llama 和 Code Llama - Instruct 7B 和 13B 模型能够根据周围上下文填充代码。
请参考 example_infilling.py 查看一些示例。可以使用以下命令运行 CodeLlama-7b 模型以进行填充(nproc_per_node 需要设置为 MP 值):
torchrun --nproc_per_node 1 example_infilling.py
--ckpt_dir CodeLlama-7b/
--tokenizer_path CodeLlama-7b/tokenizer.model
--max_seq_len 192 --max_batch_size 4
预训练的填充模型包括:Code Llama 模型 CodeLlama-7b 和 CodeLlama-13b,以及 Code Llama - Instruct 模型 CodeLlama-7b-Instruct、CodeLlama-13b-Instruct。
4、微调指令模型
Code Llama - Instruct 模型经过微调以遵循指令。为了获得预期的特性和性能,需要遵循 chat_completion 中定义的特定格式,包括 INST 和 <<SYS>> 标签,BOS 和 EOS 标记,以及之间的空格和换行符(我们建议在输入上调用 strip() 以避免双空格)。
您还可以部署附加分类器,以过滤出被认为不安全的输入和输出。请参阅 llama-recipes 存储库,了解如何将安全检查器添加到推理代码的输入和输出中的示例。
使用 CodeLlama-7b-Instruct 的示例:
torchrun --nproc_per_node 1 example_instructions.py
--ckpt_dir CodeLlama-7b-Instruct/
--tokenizer_path CodeLlama-7b-Instruct/tokenizer.model
--max_seq_len 512 --max_batch_size 4
经过微调的指令跟随模型包括:Code Llama - Instruct 模型 CodeLlama-7b-Instruct、CodeLlama-13b-Instruct、CodeLlama-34b-Instruct。
Code Llama的使用方法
更新中……
相关文章:
LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略
LLMs之Code:Code Llama的简介、安装、使用方法之详细攻略 导读:2023年08月25日(北京时间),Meta发布了Code Llama,一个可以使用文本提示生成代码的大型语言模型(LLM)。Code Llama是最先进的公开可用的LLM代码任务,并有潜…...
[国产MCU]-W801开发实例-MQTT客户端通信
MQTT客户端通信 文章目录 MQTT客户端通信1、MQTT介绍2、W801的MQTT客户端相关API介绍3、代码实现本文将详细介绍如何在W801中使用MQTT协议通信。 1、MQTT介绍 MQTT 被称为消息队列遥测传输协议。它是一种轻量级消息传递协议,可通过简单的通信机制帮助资源受限的网络客户端。 …...
搭建个人hMailServer 邮件服务实现远程发送邮件
文章目录 1. 安装hMailServer2. 设置hMailServer3. 客户端安装添加账号4. 测试发送邮件5. 安装cpolar6. 创建公网地址7. 测试远程发送邮件8. 固定连接公网地址9. 测试固定远程地址发送邮件 hMailServer 是一个邮件服务器,通过它我们可以搭建自己的邮件服务,通过cpolar内网映射工…...
React的 虚拟DOM创建
React是一个流行的JavaScript库,用于构建用户界面。它通过使用虚拟DOM来提高性能和渲染速度。本文将详细介绍React的虚拟DOM的创建方式、用法和案例,以及相关代码和解释。 虚拟DOM是什么? 虚拟DOM是React的一个重要概念,它是一个…...
供热管网安全运行监测,提升供热管网安全性能
城市管网是城市的“生命线”之一,是城市赖以生存和发展的基础,在城市基础设施高质量发展中发挥着重要作用。供热管网作为城市生命线中连接供热管线与热用户的桥梁,担负着向企业和居民用户直接供热的重要职责。随着城市热力需求的急剧增加&…...
手写Mybatis:第14章-解析和使用ResultMap映射参数配置
文章目录 一、目标:ResultMap映射参数二、设计:ResultMap映射参数三、实现:ResultMap映射参数3.1 工程结构3.2 ResultMap映射参数类图3.3 添加类型处理器3.3.1 日期类型处理器3.3.2 类型处理器注册机 3.4 存放映射对象3.4.1 结果标志3.4.2 结…...
GE VME-7807RC-410001350-93007807-410001 K数字输入模块
通道数目: VME-7807RC-410001350-93007807-410001K 数字输入模块通常具有多个数字输入通道,可以同时监测多个数字信号。 输入类型: 这种模块通常用于监测数字信号,例如开关状态(ON/OFF)或计数器脉冲。 采…...
C++插入加密,替代加密
void 插入加密() {//缘由https://bbs.csdn.net/topics/396047473int n 1, j 0;char aa[60]{}, aaa[] "abcde";cin >> aa;while (j < 60 && (aa[j] - \0))cout << aa[j] << aaa[j % 5]; } void 插入加密() {//缘由https://bbs.csdn.n…...
Web前端开发概述
Web(World Wide Web,全球广域网)是指一种基于互联网的信息系统,通过超文本链接将全球各地的文档、图像、视频等资源相互关联起来,并通过Web浏览器进行交互浏览和访问。Web的发展使得人们可以方便地获取和共享各种类型的…...
Web自动化 —— Selenium元素定位与防踩坑
1. 基本元素定位一 from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.common.by import By # selenium Service("../../chromedriver.exe") # driver webdriver.Chrome(serviceService) # driver.…...
【数据结构】树和二叉树的概念及结构(一)
目录 一,树的概念及结构 1,树的定义 2,树结点的分类及关系 3,树的表示 二,二叉树的概念及结构 1,二叉树的定义 2,特殊的二叉树 3,二叉树的性质 4,二叉树的存储结构 1&…...
第三章 USB应用笔记之USB鼠标(以STM32 hal库为例)
第三章 USB应用笔记之USB鼠标(以STM32 hal库为例) 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 第三章 USB应用笔记之USB鼠标(以STM32 hal库为例)前言一、STM32 U…...
微服务01-基本介绍+注册中心EureKa
基本介绍 服务集群:一个请求由多个服务完成,服务接口暴露,以便于相互调用; 注册中心:每个服务的状态,需要进行维护,我们可以在注册中心进行监控维护服务; 配置中心:这些…...
【ES6】JavaScript中的异步编程:async和await
在JavaScript中,异步编程是一种处理长时间运行的操作的方法,这些操作包括读取文件、网络请求或处理大数据等。在传统的回调函数中,代码按照顺序执行,一旦遇到长时间运行的操作,就需要回调函数来处理结果。这使得代码变…...
51单片机热水器温度控制系统仿真设计( proteus仿真+程序+原理图+报告+讲解视频)
51单片机热水器温度控制系统仿真设计 1.主要功能:2.仿真3. 程序代码4. 原理图5. 设计报告6. 设计资料内容清单 &&下载链接 51单片机热水器温度控制系统仿真设计( proteus仿真程序原理图报告讲解视频) 仿真图proteus7.8及以上 程序编译器&#x…...
Spring Boot 配置文件加密
方式一:Spring Cloud Config 一、建立config server 1. build.gradle 文件中添加: plugins {id javaid org.springframework.boot version 2.7.0id io.spring.dependency-management version 1.0.11.RELEASE }ext {set(springCloudVersion, "202…...
【树形权限】树形列表权限互斥选择、el-tree设置禁用等等
需求:按照权限管理配置的数据权限树展开;点击查看按钮后进入其他指定机构选择弹窗为一树形结构 本文章对项目中出现得关键点进行总结。 一、实现如上树形列表 在 element 官方表格示例中,实现树形表格列表数据渲染,非常简单。只…...
ubuntu 22.04安装cuda、cudnn、conda、pytorch
1、cuda 视频连接 https://www.bilibili.com/video/BV1bW4y197Mo/?spm_id_from333.999.0.0&vd_source3b42b36e44d271f58e90f86679d77db7cuda 11.8 https://developer.nvidia.com/cuda-toolkit-archive点击进入 https://developer.nvidia.com/cuda-11-8-0-download-arc…...
2023 最新前端面试题 (HTML 篇)
1. src 和 href 的区别 src 用于替换当前元素(引入),href 用于在当前文档和引用资源之间确立联系(引用) (1)src(source) 指向外部资源的位置,指向的内容将会嵌…...
华为云银河麒麟V10安装libmcrypt
本次安装是在华为云上执行。cpu是鲲鹏,操作系统是银河麒麟V10. 先下载安装包: wget http://downloads.sourceforge.net/mcrypt/libmcrypt-2.5.8.tar.gz 解包,进入目录中。 执行如下命令: ./configure make make install 执…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
