当前位置: 首页 > news >正文

基础算法(一)

目录

一.排序

快速排序:

归并排序:

二.二分法

整数二分模板:

浮点二分:


 

一.排序

快速排序:

  • 从数列中挑出一个元素,称为 "基准"
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区操作。
  • 递归把小于基准值元素的子数列和大于基准值元素的子数列排序。b82c44d46c39475c912134a9b9ab43c0.gif
    static void quick_sort(int[] arr,int l,int r){if (l>=r) return;//特判小于等于1个的数组int x=arr[(l+r)>>1],i=l-1,j=r+1;//取分隔基准while (i<j){//把小于x的数放左边,大于x的数放右边//跳过已符合条件do i++; while (arr[i]<x);do j--; while (arr[j]>x);//交换使符合条件if (i<j){int t=arr[i];arr[i]=arr[j];arr[j]=t;}}//递归左右边排序quick_sort(arr,l,j);quick_sort(arr,j+1,r);}

归并排序:

利用归并(先递归排序子元素,再合并)的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题(divide)成一些小的问题然后递归求解,而(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

5fd175ece4ab4069b3786b8647001d27.gif

 

    static void merge_sort(int[] arr, int l, int r) {if (l >= r) return;int mid = l + r >> 1;merge_sort(arr, l, mid);//递归排序左merge_sort(arr, mid + 1, r);//右//合并int[] tmp = new int[arr.length];int k = 0, i = l, j = mid + 1;while (i <= mid && j <= r) {//从排序好的左右数组取最小依次放入tmp数组,知道某一个数组取完if (arr[i] < arr[j])tmp[k++] = arr[i++];elsetmp[k++] = arr[j++];}//剩余部分直接放入tmp数组末尾while (i <= mid) tmp[k++] = arr[i++];while (j <= r) tmp[k++] = arr[j++];//tmp数组赋给原数组for (i = l, j = 0; i <= r; i++, j++) arr[i] = tmp[j];}

二.二分法

二分法的思想很简单,因为整个数组是单调的,每次判断后可将另外一半直接排除,大大提高查找效率,但是二分查找的边界问题很容易成为问题

整数二分模板:

    static int binary_search1(int[] arr,int l, int r){while (l<r){int mid=l+r>>1;if (check(mid)){r=mid;}else {l=mid+1;}}return l;}static int binary_search2(int[] arr,int l,int r){while (l<r){int mid=l+r+1>>1;if(check(mid)){l=mid;}else {r=mid-1;}}return l;}

根据具体情况选择判断后边界的取值,特别注意不同边界下mid的初始化.

浮点二分:

    static double binary_search3(double[] arr,double l,double r){final double eps=1e-6;while (r-l>eps){double mid=(l+r)/2;if (check(mid)) r=mid;else l=mid;}return l;}

浮点二分的核心在使用eps的精度进行判断

 

相关文章:

基础算法(一)

目录 一.排序 快速排序: 归并排序: 二.二分法 整数二分模板: 浮点二分: 一.排序 快速排序: 从数列中挑出一个元素&#xff0c;称为 "基准"重新排序数列&#xff0c;所有元素比基准值小的摆放在基准前面&#xff0c;所有元素比基准值大的摆在基准的后面&#…...

Consider defining a bean of type问题解决

Consider defining a bean of type问题解决 Consider defining a bean of type问题解决 包之后&#xff0c;发现项目直接报错Consider defining a bean of type。 会有一些包你明明Autowired 但是还是找不到什么bean 导致你项目启动不了 解决方法一: 这个问题主要是因为项目拆包…...

Android 1.2.1 使用Eclipse + ADT + SDK开发Android APP

1.2.1 使用Eclipse ADT SDK开发Android APP 1.前言 这里我们有两条路可以选&#xff0c;直接使用封装好的用于开发Android的ADT Bundle&#xff0c;或者自己进行配置 因为谷歌已经放弃了ADT的更新&#xff0c;官网上也取消的下载链接&#xff0c;这里提供谷歌放弃更新前最新…...

Llama-7b-hf和vicuna-7b-delta-v0合并成vicuna-7b-v0

最近使用pandagpt需要vicuna-7b-v0&#xff0c;重新过了一遍&#xff0c;前段时间部署了vicuna-7b-v3&#xff0c;还是有不少差别的&#xff0c;transforms和fastchat版本更新导致许多地方不匹配&#xff0c;出现很多错误&#xff0c;记录一下。 更多相关内容可见Fastchat实战…...

Centos、OpenEuler系统安装mysql

要在CentOS上安装MySQL并设置开机自启和root密码&#xff0c;请按照以下步骤进行操作&#xff1a; 确保您的CentOS系统已连接到Internet&#xff0c;并且具有管理员权限&#xff08;root或sudo访问权限&#xff09;。打开终端或SSH会话&#xff0c;使用以下命令安装MySQL&…...

如何在Win10系统上安装WSL(适用于 Linux 的 Windows 子系统)

诸神缄默不语-个人CSDN博文目录 本文介绍的方法不是唯一的安装方案&#xff0c;但在我的系统上可用。 文章目录 1. 视频版2. 文字版和代码3. 本文撰写过程中使用到的其他网络参考资料 1. 视频版 B站版&#xff1a;在Windows上安装Linux (WSL, 适用于 Linux 的 Windows 子系统…...

单片机通用学习-​什么是寄存器?​

什么是寄存器&#xff1f; 寄存器是一种特殊的存储器&#xff0c;主要用于存储和检查微机的状态。CPU寄存器用于存储和检查CPU的状态&#xff0c;具体包括计算中途数据、程序因中断或子程序分支时的返回地址、计算结果为零时的负值、计算结果为零时的信息、进位值等。 由于CP…...

【C语言】文件操作详解

文章目录 前言一、文件是什么二、文件具体介绍1.文件名2.文件类型3.文件缓冲区4.文件指针5.文件的打开和关闭 三、文件的顺序读写1.字符输入函数&#xff08;fgetc&#xff09;2.字符输出函数&#xff08;fputc&#xff09;3.文本行输入函数&#xff08;fgets&#xff09;4.文本…...

栈(Stack)的详解

目录 1.栈的概念 2.栈的模拟实现 1.栈的方法 2.模拟栈用&#xff08;整型&#xff09;数组的形式呈现 2.1栈的创建 2.2压栈 2.3栈是否为空 2.4出栈 2.5获取栈中有效元素个数 2.6获取栈顶元素 2.7完整代码实现 1.栈的概念 从上图中可以看到&#xff0c; Stack 继承了…...

深入了解GCC编译过程

关于Linux的编译过程&#xff0c;其实只需要使用gcc这个功能&#xff0c;gcc并非一个编译器&#xff0c;是一个驱动程序。其编译过程也很熟悉&#xff1a;预处理–编译–汇编–链接。在接触底层开发甚至操作系统开发时&#xff0c;我们都需要了解这么一个知识点&#xff0c;如何…...

leetcode 594.最长和谐子序列(滑动窗口)

⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;最长和谐子序列 思路&#xff1a; 第一步先将数组排序&#xff0c;在使用滑动窗口&#xff08;同向双指针&#xff09;&#xff0c;定义 left right 下标&#xff0c;比如这一组数 {1,3,2,2,5,2,3,7} 排序后 {1,2,2,2,3,…...

深入剖析云计算与云服务器ECS:从基础到实践

云计算已经在不断改变着我们的计算方式和业务模式&#xff0c;而云服务器ECS&#xff08;Elastic Compute Service&#xff09;作为云计算的核心组件之一&#xff0c;为我们提供了灵活、可扩展的计算资源。在本篇长文中&#xff0c;我们将从基础开始&#xff0c;深入探讨云计算…...

苍穹外卖技术栈

重难点详解 1、定义全局异常 2、ThreadLocal ThreadLocal 并不是一个Thread&#xff0c;而是Thread的一个局部变量ThreadLocal 为每一个线程提供独立的存储空间&#xff0c;具有线程隔离的效果&#xff0c;只有在线程内才能取到值&#xff0c;线程外则不能访问 public void …...

重新开始 杂类:C++基础

目录 1.输入输出 2 . i 与 i 3.结构体 4.二进制 1.输入输出 #include<cstdio>//cin>>,cout #include<iostream>//printf,scanf &#xff08;1&#xff09; cin , cout输入输出流可直接用于数字&#xff0c;字符 &#xff08;2&#xff09;scanf(&quo…...

自用的markdown与latex特殊符号

\triangleq \approx \xlongequal[y\arctan x]{x\tan y} \sum_{\substack{j1 \\ j\neq i}} \iiint\limits_\Omega \overset{\circ}{\vec{r}} \varphi \checkmark \stackrel{\cdot\cdot\cdot}{x}≜ ≈ y arctan ⁡ x x tan ⁡ y ∑ j 1 j ≠ i ∭ Ω r ⃗ ∘ φ ✓ x ⋅ ⋅ ⋅…...

【20期】说一说Java引用类型原理

Java中一共有4种引用类型(其实还有一些其他的引用类型比如FinalReference)&#xff1a;强引用、软引用、弱引用、虚引用。 其中强引用就是我们经常使用的Object a new Object(); 这样的形式&#xff0c;在Java中并没有对应的Reference类。 本篇文章主要是分析软引用、弱引用、…...

无锡布里渊——厘米级分布式光纤-锅炉安全监测解决方案

无锡布里渊——厘米级分布式光纤-锅炉安全监测解决方案 厘米级分布式光纤-锅炉安全监测解决方案 1、方案背景与产品简介&#xff1a; 1.1&#xff1a;背景简介&#xff1a; 锅炉作为一种把煤、石油或天燃气等化石燃料所储藏的化学能转换成水或水蒸气的热能的重要设备&#xff…...

GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING

本文是LLM系列文章&#xff0c;针对《GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING》的翻译。 GREASELM&#xff1a;图推理增强的问答语言模型 摘要1 引言2 相关工作3 提出的方法&#xff1a;GREASELM4 实验设置5 实验结果6 结论 摘要 回答关…...

QT C++ 实现网络聊天室

一、基本原理及流程 1&#xff09;知识回顾&#xff08;C语言中的TCP流程&#xff09; 2&#xff09;QT中的服务器端/客户端的操作流程 二、代码实现 1&#xff09;服务器 .ui .pro 在pro文件中添加network库 .h #ifndef WIDGET_H #define WIDGET_H#include <QWidget>…...

每日一道面试题之什么是上下文切换?

上下文切换是指在计算机操作系统中&#xff0c;当多个进程或线程同时运行时&#xff0c;系统需要将当前运行进程或线程的状态&#xff08;包括程序计数器、寄存器值、内存映像等&#xff09;保存起来&#xff0c;然后切换到另一个进程或线程继续执行的过程。上下文切换通常由操…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

基于 HTTP 的单向流式通信协议SSE详解

SSE&#xff08;Server-Sent Events&#xff09;详解 &#x1f9e0; 什么是 SSE&#xff1f; SSE&#xff08;Server-Sent Events&#xff09; 是 HTML5 标准中定义的一种通信机制&#xff0c;它允许服务器主动将事件推送给客户端&#xff08;浏览器&#xff09;。与传统的 H…...