当前位置: 首页 > news >正文

BEV感知:DETR3D

3D检测:DETR3D

  • 前言
  • Method
    • Image Feature Extracting
    • 2D-to-3D Feature Transformation
    • Loss
  • 实验结果

前言

在这篇paper,作者提出了一个更优雅的2D与3D之间转换的算法在自动驾驶领域,它不依赖于深度信息的预测,这个框架被称之为DETR3D。这个方法主要是为了葱多视角获取 scene-specific information,作者把首先生成3D的query,生成3d reference point,通过相机参数矩阵投影到2D拿到相应的2D feature。

主要贡献:

  1. 我们提出了一个基于RGB图像进行3D目标检测的改进模型。与现有的那些在最后阶段融合不同相机图像的目标预测的工作不同,我们的方法在每一层计算中都融合了所有相机的信息。据我们所知,这是将多相机检测转换为3D set-to-set预测问题的首次尝试。

  2. 我们提出了一种通过逆几何投影将提取的2D特征和3D包络框预测连接在一起的模块。它不受二阶段网络不准确的深度预测的影响,并且通过将3D信息反投影到所有可用帧上来无缝使用多个相机的信息。
    和Object DGCNN类似,我们的方法不需要后处理,比如融合每个图像或全局NMS,并且性能和现有基于NMS方法相当。在相机视野的重叠区域, 我们方法明显优于其它方法。

  3. 我们发布了代码来促进复现性和未来的研究。

Method

在这里插入图片描述

Image Feature Extracting

输入图像经过ResNet + FPN后生成了多尺度的特征图。

2D-to-3D Feature Transformation

目前已经存在的自底向上的方法会为每张image预测dense的 bounding box,并且需要一个post- processing 去处理,这种方法存在两个缺点:

  1. 依赖于depth 预测。
  2. NMS-based 方法不支持并行化。

作者为了解决上述问题,提出了自顶向下的方法,它的Decoder部分与Detr类似需要迭代六次,也可以理解为一共有6层,每一层的step如下:

  1. 随机生成 N个 object queries 并与 bounding box centre 关联。

  2. 把这些 centre point 通过 全连接层 生成BEV空间的 reference point,然后通过相机参数矩阵投影到2D 坐标。

  3. 获取从多尺度PV feature,这些2d坐标可能存在一些小数或者超过图像范围的值,前者利用bilinear interpolation ,后者通过二进制参数判断,越界置0,然后对同一个query映射到不同相机不同level的feature求和取均值。在这里插入图片描述

  4. 第一步的另一个分支,把 N个object queries 通过 Self- Multi-head-Attention内部交互,避免不同的queries 预测同一个bounding box。

  5. 把 3 ,4 步结果相加获得下一层 object queries的input。

  6. 经过attention更新后的object query通过两个MLP网络来分别预测对应物体的class和bounding box的参数。

Loss

损失函数的设计也主要受DETR的启发,我们在所有object queries预测出来的检测框和所有的ground-truth bounding box之间利用匈牙利算法进行二分图匹配,找到使得loss最小的最优匹配,并计算classification focal loss和L1 regression loss。

实验结果

在这里插入图片描述

在这里插入图片描述

相关文章:

BEV感知:DETR3D

3D检测:DETR3D前言MethodImage Feature Extracting2D-to-3D Feature TransformationLoss实验结果前言 在这篇paper,作者提出了一个更优雅的2D与3D之间转换的算法在自动驾驶领域,它不依赖于深度信息的预测,这个框架被称之为DETR3D…...

亿级高并发电商项目-- 实战篇 --万达商城项目 十二(编写用户服务、发送短信功能、发送注册验证码功能、手机号验证码登录功能、单点登录等模块)

👏作者简介:大家好,我是小童,Java开发工程师,CSDN博客博主,Java领域新星创作者 📕系列专栏:前端、Java、Java中间件大全、微信小程序、微信支付、若依框架、Spring全家桶 &#x1f4…...

整合spring cloud云服务架构 - 企业分布式微服务云架构构建

1. 介绍 Commonservice-system是一个大型分布式、微服务、面向企业的JavaEE体系快速研发平台,基于模块化、服务化、原子化、热插拔的设计思想,使用成熟领先的无商业限制的主流开源技术构建。采用服务化的组件开发模式,可实现复杂的业务功能。…...

leetcode 540. Single Element in a Sorted Array(排序数组中的单个元素)

给一个已经排好序的升序数组,其中每个元素都会重复2次,只有一个元素只有一个, 找出这个只有一个的元素。 要求时间复杂度在O(logn), 空间复杂度在O(1). 思路: 时间复杂度为O(logn), 让人想到了binary search. 因为时间复杂度为…...

Color correction for tone mapping

Abstract色调映射算法提供了复杂的方法,将真实世界的亮度范围映射到输出介质的亮度范围,但它们经常导致颜色外观的变化。在本研究中,我们进行了一系列的主观外观匹配实验,以测量对比度压缩和增强后图像色彩的变化。结果表明&#…...

JavaScript-XHR-深入理解

JavaScript-XHR-深入理解1. XHR(Asynchronous JavaScript And XML)初始1.1. xhr request demo1.2. status of XHRHttpRequest1.3. send synchronous request by xhr1.4. onload监听数据加载完成1.5. http status code1.6. get/post request with josn/form/urlcoded1.7. encaps…...

mathtype7.0最新版安装下载及使用教程

MathType是一款专业的数学公式编辑器,理科生专用的必备工具,可应用于教育教学、科研机构、工程学、论文写作、期刊排版、编辑理科试卷等领域。2014年11月,Design Science将MathType升级到MathType 6.9版本。在苏州苏杰思网络有限公司与Design…...

响应状态码

✨作者:猫十二懿 ❤️‍🔥账号:CSDN 、掘金 、个人博客 、Github 🎉公众号:猫十二懿 一、状态码大类 状态码分类说明1xx响应中——临时状态码,表示请求已经接受,告诉客户端应该继续请求或者如果…...

第六章.卷积神经网络(CNN)—CNN的实现(搭建手写数字识别的CNN)

第六章.卷积神经网络(CNN) 6.2 CNN的实现(搭建手写数字识别的CNN) 1.网络构成 2.代码实现 import pickle import matplotlib.pyplot as plt import numpy as np import sys, ossys.path.append(os.pardir)from dataset.mnist import load_mnist from collections import Order…...

【go】defer底层原理

defer的作用 defer声明的函数在当前函数return之后执行,通常用来做资源、连接的关闭和缓存的清除等。 A defer statement pushes a function call onto a list. The list of saved calls is executed after the surrounding function returns. Defer is commonly u…...

TypeScript 学习笔记

最近在学 ts 顺便记录一下自己的学习进度,以及一些知识点的记录,可能不会太详细,主要是用来巩固和复习的,会持续更新 前言 想法 首先我自己想说一下自己在学ts之前,对ts的一个想法和印象,在我学习之前&a…...

【C++】map和set的使用

map和set一、set1.1 set的介绍1.2 set的使用1.2.1 set的构造1.2.2 set的迭代器1.2.3 set的修改1.2.3.1 insert && find && erase1.2.3.2 count1.3 multiset二、map2.1 map的介绍2.2 map的使用2.2.1 map的修改2.2.1.1 insert2.2.1.2 统计次数2.3 multimap一、se…...

微电影广告具有哪些特点?

微电影广告是广告主投资的,以微电影为形式载体,以新媒体为主要传播载体,综合运用影视创作手法拍摄的集故事性、艺术性和商业性于一体的广告。它凭借精彩的电影语言和强大的明星效应多渠道联动传播,润物细无声地渗透和传递着商品信…...

Android RxJava框架源码解析(四)

目录一、观察者Observer创建过程二、被观察者Observable创建过程三、subscribe订阅过程四、map操作符五、线程切换原理简单示例1&#xff1a; private Disposable mDisposable; Observable.create(new ObservableOnSubscribe<String>() {Overridepublic void subscribe(…...

Linux信号-进程退出状态码

当进程因收到信号被终止执行退出后&#xff0c;父进程可以通过wait或waitpid得到它的exit code。进程被各信号终止的退出状态码总结如下&#xff1a;信号编号信号名称信号描述默认处理方式Exit code1SIGHUP挂起终止12SIGINT终端中断终止23SIGQUIT终端退出终止、coredump1314SIG…...

springcloud+vue实现图书管理系统

一、前言&#xff1a; 今天我们来分享一下一个简单的图书管理系统 我们知道图书馆系统可以有两个系统&#xff0c;一个是管理员管理图书的系统&#xff0c;管理员可以&#xff08;1&#xff09;查找某一本图书情况、&#xff08;2&#xff09;增加新的图书、&#xff08;3&…...

GEE学习笔记 六十:GEE中生成GIF动画

生成GIF动画这个是GEE新增加的功能之一&#xff0c;这一篇文章我会简单介绍一下如何使用GEE来制作GIF动画。 相关API如下&#xff1a; 参数含义&#xff1a; params&#xff1a;设置GIF动画显示参数&#xff0c;详细的参数可以参考ee.data.getMapId() callback&#xff1a;回调…...

react中的useEffect

是函数组件中执行的副作用&#xff0c;副作用就是指每次组件更新都会执行的函数&#xff0c;可以用来取代生命周期。 1. 基本用法 import { useEffect } from "react"; useEffect(()>{console.log(副作用); });2. 副作用分为需要清除的和不需要清除 假如设置…...

故障安全(Crash-Safe) 复制

二进制日志记录是故障安全的:MySQL 仅记录完成的事件或事务使用 sync-binlog 提高安全性默认值是1&#xff0c;最安全的&#xff0c;操作系统在每次事务后写入文件将svnc-binloq 设置为0&#xff0c;当操作系统根据其内部规则写入文件的同时服务器崩溃时性能最好但事务丢失的可…...

Spring aop之针对注解

前言 接触过Spring的都知道&#xff0c;aop是其中重要的特性之一。笔者在开发做项目中&#xff0c;aop更多地是要和注解搭配&#xff1a;在某些方法上加上自定义注解&#xff0c;然后要对这些方法进行增强(很少用execution指定&#xff0c;哪些包下的哪些方法要增强)。那这时就…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...