微服务之架构演变
随着互联网的发展,网站应用规模不断扩大,网站架构随之不断演变,演变历史大致分为单体应用架构-垂直应用架构-分布式架构-SOA架构-微服务架构-云原生架构
架构演变
单体应用架构
以前网站流量小,只需要一个应用就可以把所有功能部署在一起,比如一个电商系统,包含很多模块,我们部署到一个tomcat里服务器上。

优点:
架构简单,容易开发,部署
缺点:
不易维护、扩展(模块耦合,难以针对某个模块性优化以及水平扩展)
单点容错率低
垂直应用架构
随着访问量增大,单一架构只能依靠增加节点来应对,但是不是多有模块都有较大访问量,所以产生垂直应用架构,把一个应用拆成几个互不相干的应用。

优点
流量分担
解决并发问题
进行优化和水平扩展
提高容错率(一个系统的问题不会影响到其他系统)
缺点:
系统之间相互独立, 无法进行相互调用, 会有重复的开发任务
分布式架构
当垂直应用越来越多,重复的业务代码就会越来越多。这时候,我们就思考可不可以将重复的代码 抽取出来,做成统一的业务层作为独立的服务,然后由前端控制层调用不同的业务层服务呢?
这就产生了新的分布式系统架构。它将把工程拆分成表现层和服务层两个部分,服务层中包含业务 逻辑。表现层只需要处理和页面的交互,业务逻辑都是调用服务层的服务来实现。

优点
抽取公共的功能为服务层,提高代码复用性
缺点
系统间耦合度变高,调用关系错综复杂,难以维护
SOA架构
在分布式架构下,当服务越来越多,容量的评估,小服务资源的浪费等问题逐渐显现,此时需增加 一个调度中心对集群进行实时管理。

优点
使用注册中心解决了服务间调用关系的自动调节
缺点
服务间会有依赖关系,一旦某个环节出错会影响较大( 服务雪崩 )
服务关系复杂,运维、测试部署困难
微服务架构
微服务架构在某种程度上是面向服务的架构SOA继续发展的下一步,它更加强调服务的"彻底拆分"。

优点
服务原子化拆分,独立打包、部署和升级,保证每个微服务清晰的任务划分,利于扩展
微服务之间采用Restful等轻量级http协议相互调用
缺点
分布式系统开发的技术成本高(容错、分布式事务等)
云原生架构
云原生架构是为了更好地适应云计算环境而提出的一种软件架构方式。其产生原因包括:
- 弹性和可扩展性需求: 云计算提供了弹性和可扩展性的优势,可以根据负载情况动态调整资源。云原生架构可以更好地利用这些特性,使应用能够快速地响应变化。
- 容器化技术的兴起: 容器化技术如Docker的出现,使得应用能够以一种轻量级、可移植的方式打包和交付。云原生架构将容器作为核心组件,从而使应用更具可移植性和一致性。
- 持续集成/持续交付(CI/CD): 云原生架构鼓励使用自动化的持续集成和持续交付流程,使得软件交付更加频繁、可靠,从而更好地适应快速变化的市场需求。
- 微服务架构的兴起: 云原生架构通常采用微服务架构,将应用拆分成一组小型、独立部署的服务。这样可以提高开发速度、可维护性和可伸缩性。
- 基础设施即代码(IaC): 云原生架构鼓励使用基础设施即代码的方法来管理基础设施,使得基础设施的创建、配置和管理变得更加灵活和可重复。

优点:
- 灵活性和可伸缩性: 云原生架构允许应用根据需要自动伸缩,以适应不断变化的负载情况,从而提供更好的用户体验。
- 高可用性: 通过将应用拆分成多个微服务,并在多个地理位置部署,可以实现更高的可用性和容错性。
- 快速交付: 采用云原生架构,应用可以更快地进行持续集成和持续交付,从而更快地交付新功能和修复。
- 资源利用率: 云原生架构可以更好地利用云计算的资源弹性,避免资源浪费。
- 跨平台兼容性: 云原生架构使用容器作为交付机制,可以在不同的云平台和环境中运行,提高了可移植性。
缺点:
- 学习曲线: 云原生架构需要开发团队熟悉新的技术和方法,可能需要一定的学习曲线。
- 复杂性: 拆分成微服务和使用容器等技术增加了系统的复杂性,需要更高的管理和维护成本。
- 安全性: 由于微服务的分布和容器化,可能增加了一些安全风险,需要额外的安全措施。
- 资源消耗: 由于容器化技术本身会带来一定的资源开销,可能需要更多的资源来支持同样的工作负不适用于所有应用: 云原生架构不适用于所有应用,特别是那些对基础架构依赖较大的传统应用。
总之,云原生架构在适应现代云计算环境和提高开发效率方面具有明显优势,但也需要考虑到其带来的复杂性和管理挑战。是否选择采用云原生架构取决于具体应用场景和团队的技术能力。
相关文章:
微服务之架构演变
随着互联网的发展,网站应用规模不断扩大,网站架构随之不断演变,演变历史大致分为单体应用架构-垂直应用架构-分布式架构-SOA架构-微服务架构-云原生架构 架构演变 单体应用架构 以前网站流量小,只需要一个应用就可以把所有功能…...
面试问题记录一 --- C++(Qt方向)
以下是我于2023年6~7月间换工作时遇到的面试题目,有需要的小伙伴可以参考下。约100个题目。 1 C和C++的区别 1) 文件区别:C源文件后缀 .c;C++源文件后缀 .cpp 2) 返回值: C默认返回int型;C++ 若无返回值,必须指定为void 3) 参数列表:C默认接收多个…...
使用词袋模型(BoW)测试提取图像的特征点和聚类中心
文章目录 环境配置代码测试 环境配置 (1) 导入opencv,参考链接 https://blog.csdn.net/Aer_7z/article/details/132612369(2) 安装numpy 激活虚拟环境的前提下,输入: pip install numpy(3) 安装sklearn 激活虚拟环境的前提下,输…...
利用vba处理Excel表格数据实现键值转化,适用于将编码转化成对应的文本
最近遇到了一个甲方需要提供系统登录的用户名单和对应的角色权限内容。无奈直接从数据库导出的数据对应的都是编码,没有转成中文,想着偷个懒能不能直接用Excel直接转,网上看了一下有修改单元格格式的,但需要编码是2到3个。多的就用…...
IntelliJ IDEA(Windows 版)的所有快捷键
🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥 大家好 本文参考了 IntelliJ IDEA 的官网,列举了IntelliJ IDEA(Windows 版)的所有快捷…...
文件上传漏洞全面渗透姿势
0x00 文件上传场景 (本文档只做技术交流) 文件上传的场景真的随处可见,不加防范小心,容易造成漏洞,造成信息泄露,甚至更为严重的灾难。 比如某博客网站评论编辑模块,右上角就有支持上传图片的功能,提交带…...
GreenPlum的gpfdist使用与原理流程分析
一、简介 GreenPlum 的数据导入功能作为对数据源的一种扩充,数据导入的方式有: 1、insert 该方式通过 sql 语句,把数据一条一条插入至表中。这种方式,不仅读取数据慢(一条一条读取),且数据需要…...
Spring AOP与静态代理/动态代理
文章目录 一、代理模式静态代理动态代理代理模式与AOP 二、Spring AOPSping AOP用来处理什么场景jdk 动态代理cglib 动态代理面试题:讲讲Spring AOP的原理与执行流程 总结 一、代理模式 代理模式是一种结构型设计模式,它允许对象提供替代品或占位符&…...
【LeetCode算法系列题解】第51~55题
CONTENTS LeetCode 51. N 皇后(困难)LeetCode 52. N 皇后 II(困难)LeetCode 53. 最大子序和(中等)LeetCode 54. 螺旋矩阵(中等)LeetCode 55. 跳跃游戏(中等) …...
驱动开发错误汇编
本博文将会不定期更新。以便记录我的驱动开发生涯中的一些点点滴滴的技术细节和琐事。 1. link阶段找不到导出函数 比如"LNK2019 无法解析的外部符号 _FltCreateCommunicationPort32"。 出现这种情况的原因是,驱动的编译环境忽略了所有的默认库&#x…...
知识图谱项目实践
目录 步骤 SpaCy Textacy——Text Analysis for Cybersecurity Networkx Dateparser 导入库 写出页面的名称 编辑 自然语言处理 词性标注 可能标记的完整列表 依存句法分析(Dependency Parsing,DEP) 可能的标签完整列表 实例理…...
stable diffusion实践操作-提示词-人物属性
系列文章目录 stable diffusion实践操作-提示词 文章目录 系列文章目录前言一、提示词汇总1.1 人物属性11.2 人物属性2 前言 本文主要收纳总结了提示词-人物属性。 一、提示词汇总 1.1 人物属性1 角色类型人物身材胸部头发-发型头发-发色[女仆][霊烏路空][大腿][乳房][呆毛…...
RabbitMQ的安装和配置
将RabbitMQ文件夹传到linux根目录 开启管理界面及配置...
WebRTC 日志
WebRTC 日志 flyfish WebRTC支持的日志等级 // // The meanings of the levels are: // LS_VERBOSE: This level is for data which we do not want to appear in the // normal debug log, but should appear in diagnostic logs. // LS_INFO: Chatty level used in de…...
【python爬虫】16.爬虫知识点总结复习
文章目录 前言爬虫总复习工具解析与提取(一)解析与提取(二)更厉害的请求存储更多的爬虫更强大的爬虫——框架给爬虫加上翅膀 爬虫进阶路线指引解析与提取 存储数据分析与可视化更多的爬虫更强大的爬虫——框架项目训练 反爬虫应对…...
Windows系统中Apache Http服务器简单使用
1 简介 Apache HTTP服务器是一个开源的、跨平台的Web服务器软件。它由Apache软件基金会开发和维护。Apache HTTP服务器可以在多种操作系统上运行,如Windows、Linux、Unix等,并且支持多种编程语言和技术,如PHP、Perl、Python、Java等。…...
Django ORM 框架中的表关系,你真的弄懂了吗?
Django ORM 框架中的表关系 为了说清楚问题,我们设计一个 crm 系统,包含五张表: 1.tb_student 学生表 2.tb_student_detail 学生详情表 3.tb_salesman 课程顾问表 4.tb_course 课程表 5.tb_entry 报名表 表关系和字段如下图:…...
第五课:C++实现加密PDF文档解密
请注意,未经授权的加密PDF文件解密是非法的,本文仅为学术和研究目的提供参考。 打开加密的PDF文件并获取密钥 在C++中,可以使用pdfium库打开加密的PDF文件。使用pdfium库中的FPDF_LoadCustomDocument函数可以打开具有自定义访问权限的加密文件。该函数接受一个IFX_FileRead*…...
罗马数字转整数
罗马数字转整数 题目: 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M …...
processflow流程图多人协作预热
前言 在线上办公如火如荼的今天,多人协作功能是每个应用绕不开的门槛。processflow在线流程图(前身基于drawio二次开发)沉寂两年之久,经过长时间设计开发,调整,最终完成了多人协作的核心模块设计。废话不多…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
