基于Python+DenseNet121算法模型实现一个图像分类识别系统案例
目录
- 介绍
- 在TensorFlow中的应用
- 实战案例
- 最后
一、介绍
DenseNet(Densely Connected Convolutional Networks)是一种卷积神经网络(CNN)架构,2017年由Gao Huang等人提出。该网络的核心思想是密集连接,即每一层都接收其前面所有层的输出作为输入。DenseNet121是该家族中的一个特定模型,其中121表示网络的总层数。
DenseNet121的主要特点如下:
- 密集连接(Dense Connection):在一个Dense Block内,第 i 层的输入不仅仅是第 i−1 层的输出,还包括第 i−2 层、第 i−3 层等所有之前层的输出。这种密集连接方式促进了特征的重用。
- 参数效率:由于特征在网络中得以重复使用,DenseNet相较于其他深度网络模型(如VGG或ResNet)通常需要更少的参数来达到相同(或更好)的性能。
- 特征复用与强化:密集连接方式也促进了梯度的反向传播,使得网络更容易训练。同时,低层特征能被直接传播到输出层,因此被更好地强化和利用。
- 过拟合抑制:由于有更少的参数和更好的参数复用,DenseNet很适合用于数据集较小的场合,能在一定程度上抑制过拟合。
- 增加网络深度:由于密集连接具有利于梯度反向传播的特性,DenseNet允许构建非常深的网络。
- 计算效率:虽然有很多连接,但由于各层之间传递的是特征图(而不是参数或梯度),因此在计算和内存效率方面表现得相对较好。
- 易于修改和适应:DenseNet架构很容易进行各种修改,以适应不同的任务和应用需求。
DenseNet121在很多计算机视觉任务中都表现出色,例如图像分类、目标检测和语义分割等。因其出色的性能和高效的参数使用,DenseNet121常被用作多种视觉应用的基础模型。以下DeseNet算法与ResNet算法的区别。
特性/算法 | DenseNet | ResNet |
---|---|---|
连接方式 | 每一层都与其前面的所有层密集连接 | 每一层仅与其前一层进行残差连接 |
参数效率 | 更高,由于特征复用 | 相对较低 |
特征复用 | 高度的特征复用,所有前面层的输出都用作每一层的输入 | 仅前一层的输出被用于下一层 |
梯度流动 | 由于密集连接,梯度流动更容易 | 通过残差连接改善梯度流动,但相对于DenseNet可能较弱 |
过拟合抑制 | 更强,尤其在数据集小的情况下 | 相对较弱 |
计算复杂度 | 一般来说更低,尽管有更多的连接 | 一般来说更高,尤其是在深层网络中 |
网络深度 | 可以更深,且更容易训练 | 可以很深,但通常需要更仔细的设计 |
可适应性 | 架构灵活,易于修改 | 相对灵活,但大多数改动集中在残差块的设计 |
创新点 | 密集连接 | 残差连接 |
主要应用 | 图像分类、目标检测、语义分割等 | 图像分类、目标检测、人脸识别等 |
这两种网络架构都在多种计算机视觉任务中表现出色,但根据具体应用的需求和限制,你可能会选择其中一种作为基础模型。
二、在TensorFlow中的应用
在TensorFlow(特别是TensorFlow 2.x版本)中使用DenseNet121模型非常方便,因为该模型已经作为预训练模型的一部分集成在TensorFlow库中。以下是一些常见用法的示例。
导入库和模型
首先,确保您已经安装了TensorFlow库。然后,导入所需的库和模型。
import tensorflow as tf
from tensorflow.keras.applications import DenseNet121
实例化模型
您可以通过以下方式实例化一个DenseNet121模型:
# 预训练权重和全连接层
model = DenseNet121(weights='imagenet', include_top=True)# 预训练权重但无全连接层(用于特征提取)
model = DenseNet121(weights='imagenet', include_top=False)
数据预处理
DenseNet121需要特定格式的输入数据。通常,您需要将输入图像缩放到224x224像素,并进行一些额外的预处理。
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.densenet import preprocess_input
import numpy as npimg_path = 'your_image_path.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
模型预测
使用预处理过的图像进行预测:
preds = model.predict(x)
三、实战案例
如下图所示,通过对几种常见的水果数据集进行训练,最后得到模型。下面是其经过25轮迭代训练的训练过程图、ACC曲线图、LOSS曲线图、可视化界面等
四、最后
大家可以尝试通过DenseNet121算法训练自己的数据集,然后封装成可视化界面部署等。由于研发投入项目付非提供(提供包括数据集、训练预测代码、训练好的模型、WEB网页端界面、包远程安装调试部署)。如需要请或类似项目订制开发请访问:https://www.yuque.com/ziwu/yygu3z/sr43e6q0wormmfpv
相关文章:

基于Python+DenseNet121算法模型实现一个图像分类识别系统案例
目录 介绍在TensorFlow中的应用实战案例最后 一、介绍 DenseNet(Densely Connected Convolutional Networks)是一种卷积神经网络(CNN)架构,2017年由Gao Huang等人提出。该网络的核心思想是密集连接,即每…...
旋转图片两种方法
这两种方法在旋转图像时,可能会产生一些不同的效果: rotate_image_new()旋转后的图像完全包含旋转前的内容,并且填充边界尽可能小 rotate_image() 保持原始图像的大小,并根据填充选项决定是否填充边界为白色。如果 if_fill_whit…...

10 mysql tiny/small/medium/big int 的数据存储
前言 这里主要是 由于之前的一个 datetime 存储的时间 导致的问题的衍生出来的探究 探究的主要内容为 int 类类型的存储, 浮点类类型的存储, char 类类型的存储, blob 类类型的存储, enum/json/set/bit 类类型的存储 本文主要 的相关内容是 int 类类型的相关数据的存储 …...

UI自动化测试之Jenkins配置
团队下半年的目标之一是实现自动化测试,这里要吐槽一下,之前开发的测试平台了,最初的目的是用来做接口自动化测试和性能测试,但由于各种原因,接口自动化测试那部分功能整个废弃掉了,其中和易用性有很大关系…...

电视盒子什么品牌好?数码博主盘点目前性能最好的电视盒子
电视盒子是非常重要的,老人小孩基本每天都会看电视,而电视盒子作为电视盒子的最佳拍档销量十分火爆,我自己每个月都会测评几次电视盒子,今天给大家详细解读一下电视盒子什么品牌好,看看目前性能最好的电视盒子是哪些&a…...
对于枚举类型的输出
对于枚举类型的输出 对于枚举类型的输出,您可以使用以下方法:1. 将枚举值转换为整数进行输出:cppODU_TYPE type ODU_TYPE_331;int value static_cast<int>(type);std::cout << "ODU_TYPE: " << value <<…...

solidity开发环境配置,vscode搭配remix
#学习笔记 初学solidity,使用remix非常方便,因为需要的环境都配置好了,打开网站就可以使用。 不过在编写代码方面,使用vscode更方便,而vscode本身并不能像remix那样部署合约,它还需要安装插件。 点击红色箭…...
chatGPT生成代码--go组合算法
提问:用golang写一个组合算法函数zuhe(x,n),x为组合所需的字符,n 为组合后的字符串长度,例如 x"ab", n2 结果返回 aa,ab,bb,ba 结果:下面是一个用Go编写的生成长度为n的字符串组合的函数 zuhe,其…...

推荐6款普通人搞副业做自媒体AI工具
hi,同学们,我是赤辰,本期是赤辰第5篇AI工具类教程,文章底部准备了粉丝福利,看完可以领取!身边越来越多的小伙伴靠自媒体实现财富自由了!因此,推荐大家在工作之余或空闲时间从事自媒体…...
vs中git提交合并分支的步骤记录
vs打开终端 PS D:\project\et_lower4_driver> git pull Already up to date. PS D:\project\et_lower4_driver> git branch * kiyun_usb7851 master PS D:\project\et_lower4_driver> git checkout master Switched to branch master Your branch is up to date wit…...
PostgreSQL 备份恢复:pg_probackup
文章目录 前言1. 安装备份工具1.1 环境介绍1.2 RPM 安装1.3 验证 2. 配置备份工具2.1 初始化设置2.2 创建备份用户2.3 配置自动归档 3. 工具使用介绍3.1 init3.2 add-instance3.3 del-instance3.4 set-config3.5 show-config3.6 set-backup3.7 backup3.8 show3.9 delete3.10 re…...

博客程序系统其它功能扩充
一、注册功能 1、约定前后端接口 2、后端代码编写 WebServlet("/register") public class RegisterServlet extends HttpServlet {Overrideprotected void doPost(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {//设置…...

MATLAB 2023安装方法之删除旧版本MATLAB,安装新版本MATLAB
说明:之前一直使用的是MATLAB R2020b,但最近复现Github上的程序时,运行不了,联系作者说他的程序只能在MATLAB 2021之后的版本运行,因此决定安装最新版本的MATLAB。 系统:Windows 11 需要卸载的旧MATLAB 版…...

全国唯一一所初试考Java的学校!平均300分拿下
苏州科技大学 考研难度(☆) 内容:23考情概况(拟录取和复试分析)、院校概况、23专业目录、23复试详情、各专业考情分析、各科目考情分析。 正文1187字,预计阅读:3分钟 2023考情概况 苏州科技…...
day35 | 860.柠檬水找零、406.根据身高重建队列、452. 用最少数量的箭引爆气球
目录: 解题及思路学习 860. 柠檬水找零 在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。 每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美…...
ffmpeg批量转码
新建.bat文件 echo offfor %%s in (*.mp4) do ( echo %%s ffmpeg -i %%s -b 7M %%~ns7m.mp4 ) pause如果你的电脑有显卡,也可以使用硬件转码。转码程序链接...

时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测
时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测 目录 时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测效果一览基本描述程序设计参考资料 效果一览 基本描述 1.Matlab实现QPSO-BiLSTM、PSO-BiLSTM和BiLSTM神经网络时间序列预测…...

【TypeScript学习】—基本类型(二)
【TypeScript学习】—基本类型(二) 一、TypeScript基本类型 //也可以直接用字面量进行类型声明let a:10; a10;//也可以使用 |来连接多个类型(联合类型)let b:"male"|"female"; b"male"; b"fe…...

uni-app点击复制指定内容(点击复制)
官方api uni.setClipboardData(OBJECT) uni.setClipboardData({data: 要被复制的内容,success: function () {console.log(success);} });...

无涯教程-Flutter - 简介
Flutter是一个由谷歌开发的开源移动应用软件开发工具包,用于为Android、iOS、 Windows、Mac、Linux、Google Fuchsia开发应用。 通常,创建移动应用程序是一个非常复杂和具有挑战性的任务。有许多框架可用,它提供了开发移动应用程序的出色函数…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...