当前位置: 首页 > news >正文

时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测

时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测

目录

    • 时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测
      • 效果一览
      • 基本描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

11
12

基本描述

1.Matlab实现QPSO-BiLSTM、PSO-BiLSTM和BiLSTM神经网络时间序列预测;
2.输入数据为单变量时间序列数据,即一维数据;
3.运行环境Matlab2020及以上,依次运行Main1BiLSTMTS、Main2PSOBiLSTMTS、Main3QPSOBiLSTMTS、Main4CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;BiLSTM(双向长短时记忆模型)与粒子群算法优化后的BiLSTM(PSOBiLSTM)以及量子粒子群算法优化后的BiLSTM(QPSOBiLSTM)对比实验,可用于风电、光伏等负荷预测,时序预测,数据为单输入单输出,PSO、QPSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。
4.命令窗口输出MAE、MAPE、RMSE和R2;

程序设计

  • 完整程序和数据下载:私信博主回复QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测
for i=1:PopNum%随机初始化速度,随机初始化位置for j=1:dimif j==dim% % 隐含层节点与训练次数是整数 学习率是浮点型pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsepop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endend
end% calculate the fitness_value of Pop
pbest = pop;
gbest = zeros(1,dim);
data1 = zeros(Maxstep,PopNum,dim);
data2 = zeros(Maxstep,PopNum);
for i = 1:PopNumfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);f_pbest(i) = fit(i);
end
g = min(find(f_pbest == min(f_pbest(1:PopNum))));
gbest = pbest(g,:);
f_gbest = f_pbest(g);%-------- in the loop -------------
for step = 1:Maxstepmbest =sum(pbest(:))/PopNum;% linear weigh factorb = 1-step/Maxstep*0.5;data1(step,:,:) = pop;data2(step,:) = fit;for i = 1:PopNuma = rand(1,dim);u = rand(1,dim);p = a.*pbest(i,:)+(1-a).*gbest;pop(i,:) = p + b*abs(mbest-pop(i,:)).*...log(1./u).*(1-2*(u >= 0.5));% boundary detectionfor j=1:dimif j ==dimif pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %endelsepop(i,j)=round(pop(i,j));if pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);if fit(i) < f_pbest(i)pbest(i,:) = pop(i,:);f_pbest(i) = fit(i);endif f_pbest(i) < f_gbestgbest = pbest(i,:);f_gbest = f_pbest(i);endendtrace(step)=f_gbest;step,f_gbest,gbestresult(step,:)=gbest;
end
or i=1:N%随机初始化速度,随机初始化位置for j=1:Dif j==D% % 隐含层节点与训练次数是整数 学习率是浮点型x(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendv(i,:)=rand(1,D);
end%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:Np(i)=fitness(x(i,:),p_train,t_train,p_test,t_test);y(i,:)=x(i,:);end
[fg,index]=min(p);
pg = x(index,:);             %Pg为全局最优%------进入主要循环,按照公式依次迭代------------for t=1:Mfor i=1:Nv(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));x(i,:)=x(i,:)+v(i,:);for j=1:Dif j ~=Dx(i,j)=round(x(i,j));endif x(i,j)>xmax(j) | x(i,j)<xmin(j)if j==Dx(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendtemp=fitness(x(i,:),p_train,t_train,p_test,t_test);if temp<p(i)p(i)=temp;y(i,:)=x(i,:);endif p(i)<fgpg=y(i,:);fg=p(i);endendtrace(t)=fg;result(t,:)=pg;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127596777?spm=1001.2014.3001.5501
[2] https://download.csdn.net/download/kjm13182345320/86830096?spm=1001.2014.3001.5501

相关文章:

时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测

时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测 目录 时序预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM和BiLSTM时间序列预测效果一览基本描述程序设计参考资料 效果一览 基本描述 1.Matlab实现QPSO-BiLSTM、PSO-BiLSTM和BiLSTM神经网络时间序列预测…...

【TypeScript学习】—基本类型(二)

【TypeScript学习】—基本类型&#xff08;二&#xff09; 一、TypeScript基本类型 //也可以直接用字面量进行类型声明let a:10; a10;//也可以使用 |来连接多个类型&#xff08;联合类型&#xff09;let b:"male"|"female"; b"male"; b"fe…...

uni-app点击复制指定内容(点击复制)

官方api uni.setClipboardData(OBJECT) uni.setClipboardData({data: 要被复制的内容,success: function () {console.log(success);} });...

无涯教程-Flutter - 简介

Flutter是一个由谷歌开发的开源移动应用软件开发工具包&#xff0c;用于为Android、iOS、 Windows、Mac、Linux、Google Fuchsia开发应用。 通常&#xff0c;创建移动应用程序是一个非常复杂和具有挑战性的任务。有许多框架可用&#xff0c;它提供了开发移动应用程序的出色函数…...

【STM32】学习笔记-时间戳RTC

Unix时间戳 Unix 时间戳&#xff08;Unix Timestamp&#xff09;定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数&#xff0c;不考虑闰秒 时间戳存储在一个秒计数器中&#xff0c;秒计数器为32位/64位的整型变量 世界上所有时区的秒计数器相同&#xff0c;不同时区通…...

绿色能源迎来跨越式增长新时代

当今世界&#xff0c;百年未有之大变局加速演进&#xff0c;新一轮科技革命和产业变革深入发展&#xff0c;全球气候治理呈现新局面&#xff0c;新能源和信息技术紧密融合&#xff0c;生产生活方式加快转向低碳化、智能化&#xff0c;能源体系和发展模式正在进入非化石能源主导…...

【算法】函数渐近的界基础知识及定理

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…...

stable diffusion实践操作-writing

文章目录 前言一、优点1.1、免费开源1.2、拥有强大的外接模型 二、组成要素2.1 底模2.2 风格2.3 提示词2.4 参数配置 三、生图原理四、下载链接 实践正文一、安装1.1 电脑硬件配置查看1.2 安装本地版本的stable diffusion1.3 SD使用教程 二、模型介绍与下载2.1大模型2.2 Lora模…...

idea查找maven所有依赖

文章目录 idea自带的依赖结构图idea安装maven helper插件 idea自带的依赖结构图 缺点是只有依赖&#xff0c;没有版本 idea安装maven helper插件 settings–>plugins–>搜索maven helper并安装 安装后打开pom.xml文件会有依赖解析 勾选conflict就是有冲突的依赖选中…...

【业务功能篇97】微服务-springcloud-springboot-电商购物车模块-获取当前登录用户的购物车信息

购物车功能 一、购物车模块 1.创建cart服务 我们需要先创建一个cart的微服务&#xff0c;然后添加相关的依赖&#xff0c;设置配置&#xff0c;放开注解。 <dependencies><dependency><groupId>com.msb.mall</groupId><artifactId>mall-commo…...

Shell常用的几个正则表达式:[:alnum:], [:alpha:], [:upper:], [:lower:], [:digit:] 认知

一&#xff1a;通配符命令简介&#xff1a; 匹配符合相关条件的符号&#xff0c;匹配文件名查找。 通配符类型&#xff1a; *&#xff1a;匹配任意长度的任意字符 &#xff1f;&#xff1a;匹配任意单个字符 []&#xff1a;匹配指定范围内的任意单个字符 [^]&#xff1a;匹配指…...

简单的爬虫代码 爬(豆瓣电影)

路漫漫其修远兮&#xff0c;吾将上下而求索 这次写一个最简单的python爬虫代码&#xff0c;也是大多教程第一次爬取的&#xff0c;代码里面有个别的简单介绍&#xff0c;希望能加深您对python爬虫的理解。 本次爬取两个网页数据 一 爬取的网站 豆瓣电影 爬取网页中的&#…...

微服务之架构演变

随着互联网的发展&#xff0c;网站应用规模不断扩大&#xff0c;网站架构随之不断演变&#xff0c;演变历史大致分为单体应用架构-垂直应用架构-分布式架构-SOA架构-微服务架构-云原生架构 架构演变 单体应用架构 以前网站流量小&#xff0c;只需要一个应用就可以把所有功能…...

面试问题记录一 --- C++(Qt方向)

以下是我于2023年6~7月间换工作时遇到的面试题目,有需要的小伙伴可以参考下。约100个题目。 1 C和C++的区别 1) 文件区别:C源文件后缀 .c;C++源文件后缀 .cpp 2) 返回值: C默认返回int型;C++ 若无返回值,必须指定为void 3) 参数列表:C默认接收多个…...

使用词袋模型(BoW)测试提取图像的特征点和聚类中心

文章目录 环境配置代码测试 环境配置 (1) 导入opencv&#xff0c;参考链接 https://blog.csdn.net/Aer_7z/article/details/132612369(2) 安装numpy 激活虚拟环境的前提下&#xff0c;输入&#xff1a; pip install numpy(3) 安装sklearn 激活虚拟环境的前提下&#xff0c;输…...

利用vba处理Excel表格数据实现键值转化,适用于将编码转化成对应的文本

最近遇到了一个甲方需要提供系统登录的用户名单和对应的角色权限内容。无奈直接从数据库导出的数据对应的都是编码&#xff0c;没有转成中文&#xff0c;想着偷个懒能不能直接用Excel直接转&#xff0c;网上看了一下有修改单元格格式的&#xff0c;但需要编码是2到3个。多的就用…...

IntelliJ IDEA(Windows 版)的所有快捷键

&#x1fa81;&#x1f341; 希望本文能够给您带来一定的帮助&#x1f338;文章粗浅&#xff0c;敬请批评指正&#xff01;&#x1f341;&#x1f425; 大家好 本文参考了 IntelliJ IDEA 的官网&#xff0c;列举了IntelliJ IDEA&#xff08;Windows 版&#xff09;的所有快捷…...

文件上传漏洞全面渗透姿势

0x00 文件上传场景 (本文档只做技术交流) 文件上传的场景真的随处可见&#xff0c;不加防范小心&#xff0c;容易造成漏洞&#xff0c;造成信息泄露&#xff0c;甚至更为严重的灾难。 比如某博客网站评论编辑模块&#xff0c;右上角就有支持上传图片的功能&#xff0c;提交带…...

GreenPlum的gpfdist使用与原理流程分析

一、简介 GreenPlum 的数据导入功能作为对数据源的一种扩充&#xff0c;数据导入的方式有&#xff1a; 1、insert 该方式通过 sql 语句&#xff0c;把数据一条一条插入至表中。这种方式&#xff0c;不仅读取数据慢&#xff08;一条一条读取&#xff09;&#xff0c;且数据需要…...

Spring AOP与静态代理/动态代理

文章目录 一、代理模式静态代理动态代理代理模式与AOP 二、Spring AOPSping AOP用来处理什么场景jdk 动态代理cglib 动态代理面试题&#xff1a;讲讲Spring AOP的原理与执行流程 总结 一、代理模式 代理模式是一种结构型设计模式&#xff0c;它允许对象提供替代品或占位符&…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

Android屏幕刷新率与FPS(Frames Per Second) 120hz

Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数&#xff0c;单位是赫兹&#xff08;Hz&#xff09;。 60Hz 屏幕&#xff1a;每秒刷新 60 次&#xff0c;每次刷新间隔约 16.67ms 90Hz 屏幕&#xff1a;每秒刷新 90 次&#xff0c;…...