当前位置: 首页 > news >正文

B081-Lucene+ElasticSearch

目录

      • 认识全文检索
        • 概念
        • lucene原理
        • 全文检索的特点
        • 常见的全文检索方案
      • Lucene
        • 创建索引
          • 导包
          • 分析图
          • 代码
        • 搜索索引
          • 分析图
          • 代码
      • ElasticSearch
        • 认识ElasticSearch
        • ES与Kibana的安装及使用说明
        • ES相关概念理解和简单增删改查
        • ES查询
          • DSL查询
          • DSL过滤
        • 分词器
          • IK分词器
            • 安装
            • 测试分词器
          • 文档映射(字段类型设置)
            • ES字段类型
            • 默认映射
            • kibana
        • Java操作ES
          • 导入依赖
          • crud实现

认识全文检索

概念

对非结构化数据的搜索就叫全文检索,狭义的理解主要针对文本数据的搜索。

非结构化数据:
没有固定模式的数据,如WORD、PDF、PPT、EXL,各种格式的图片、视频等。
非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、XML, HTML、各类报表、图像和音频/视频信息等等

理解:可以理解为全文检索就是把没有结构化的数据变成有结构的数据,然后进行搜索,因为有结构化的数据通常情况下可以按照某种算法进行搜索。

lucene原理

在这里插入图片描述
在这里插入图片描述

全文检索的特点

相关度最高的排在最前面,官网中相关的网页排在最前面; java
关键词的高亮。
只处理文本,不处理语义。 以单词方式进行搜索
比如在输入框中输入“中国的首都在哪里”,搜索引擎不会以对话的形式告诉你“在北京”,而仅仅是列出包含了搜索关键字的网页。

常见的全文检索方案

全文搜索工具包-Lucene(核心)
全文搜索服务器 ,Elastic Search(ES) / Solr等封装了lucene并扩展

Lucene

创建索引

导包
<dependency><groupId>org.apache.lucene</groupId><artifactId>lucene-core</artifactId><version>5.5.0</version>
</dependency>
<dependency><groupId>org.apache.lucene</groupId><artifactId>lucene-analyzers-common</artifactId><version>5.5.0</version>
</dependency>
<dependency><groupId>org.apache.lucene</groupId><artifactId>lucene-queryparser</artifactId><version>5.5.0</version>
</dependency>
分析图

在这里插入图片描述

代码
    //创建索引@Testpublic void testCreateIndex() throws Exception {// 准备原始数据String doc1 = "hello world";int id1 = 1;String doc2 = "hello java world";int id2 = 2;String doc3 = "lucene world";int id3 = 3;//把数据变成Document对象Document d1 = new Document();d1.add(new TextField("context",doc1, Field.Store.YES));// 存储列的名字;存储的数据;是否要存储原始数据d1.add(new IntField("id", id1, Field.Store.YES));Document d2 = new Document();d2.add(new TextField("context",doc2, Field.Store.YES));d2.add(new IntField("id", id2, Field.Store.YES));Document d3 = new Document();d3.add(new TextField("context",doc3, Field.Store.YES));d3.add(new IntField("id", id3, Field.Store.YES));//准备索引库路径Directory directory = new SimpleFSDirectory(Paths.get("D:/(课件 Xmind 图 代码) (总结) (原理)(题目) (预习)/081-Lucene+ElasticSearch/code/lucene-demo/index"));Analyzer analyzer = new SimpleAnalyzer();//配置信息,添加分词器IndexWriterConfig conf = new IndexWriterConfig(analyzer);//创建IndexWriter,创建索引IndexWriter indexWriter = new IndexWriter(directory,conf);//使用IndexWriter创建索引indexWriter.addDocument(d1);indexWriter.addDocument(d2);indexWriter.addDocument(d3);//提交创建indexWriter.commit();indexWriter.close();System.out.println("创建索引完成.......");}

搜索索引

分析图

在这里插入图片描述

代码
    //搜索索引@Testpublic void testSearchIndex() throws Exception {//索引库路径Directory directory = new SimpleFSDirectory(Paths.get("D:/(课件 Xmind 图 代码) (总结) (原理)(题目) (预习)/081-Lucene+ElasticSearch/code/lucene-demo/index"));IndexReader indexReader = DirectoryReader.open(directory);//创建indexSearch 搜索索引IndexSearcher indexSearcher = new IndexSearcher(indexReader);//Term(String fld, String text) 要查询哪个字段,查询什么内容TermQuery query = new TermQuery(new Term("context", "hello"));//query:查询的条件   n:查多少条TopDocs topDocs = indexSearcher.search(query, 10);System.out.println("命中的条数:"+topDocs.totalHits);//列表结果,带有分数ScoreDoc[] scoreDocs = topDocs.scoreDocs;for (ScoreDoc scoreDoc : scoreDocs) {//文档分数float score = scoreDoc.score;//文档idint docID = scoreDoc.doc;//根据id获取文档Document doc = indexSearcher.doc(docID);System.out.println("id = "+doc.get("id")+" , score = "+score+" ,context = "+doc.get("context"));}}

ElasticSearch

认识ElasticSearch

见文档

ES与Kibana的安装及使用说明

见文档
Kibana可视化管理工具,相当于navicat,

ES相关概念理解和简单增删改查

在这里插入图片描述

#  添加数据       ---用户自己维护文档id
PUT pethome/user/5
{"id":5, "name": "wenda", "age":20,"size":170, "sex":1
}#  添加数据       ---ES自动维护文档id AYpOuIdMNmSVfcreiYqz
POST pethome/user/
{"id":2, "name": "wenda", "age":20,"size":170, "sex":1
}# 查询单条
GET pethome/user/1
GET pethome/user/AYpOuIdMNmSVfcreiYqz# 修改 全量修改
PUT pethome/user/1
{"id":1, "name": "wendaxi", "age":21,"sex":0
}# 修改  局部
POST pethome/user/1/_update
{"doc":{"name": "wenda", "age":24}
}#  删除
DELETE pethome/user/AYpOuIdMNmSVfcreiYqz#  获取多个数据结果
GET pethome/user/_mget
{"ids":[1,"AYpOuIdMNmSVfcreiYqz"]
}#  空搜索
GET _search#  分页
GET pethome/user/_search?size=2&from=2#  带条件分页
GET pethome/user/_search?q=age:20&size=2&from=2

ES查询

DSL查询

由ES提供丰富且灵活的查询语言叫做DSL查询(Query DSL),它允许你构建更加复杂、强大的查询。
DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现

# 查询名字叫做wenda,size在160-180之间,sex为1,
# 按照id升序排序 查询第一页 的数据 每页3条# 排序分页
GET pethome/user/_search
{"size": 3,"from": 0,"sort": [{"id": {"order": "asc"}}]
}#  加入查询条件
#  match 相当于模糊查询(分词查询)
GET pethome/user/_search
{"query": {"match": {"name": "wenda"}}, "size": 3,"from": 0,"sort": [{"id": {"order": "asc"}}]
}
DSL过滤

DSL过滤 查询文档的方式更像是对于我的条件“有”或者“没有”,–精确查询
而DSL查询语句则像是“有多像”。–类似于模糊查询

DSL过滤和DSL查询在性能上的区别 :
过滤结果可以缓存并应用到后续请求。
查询语句同时 匹配文档,计算相关性,所以更耗时,且不缓存。
过滤语句 可有效地配合查询语句完成文档过滤。

# 工作中少用like全表扫描,会让索引失效
# where name like '%y%' and age=18 
# where age=18 and name like "%y%" (快)
# 先精确匹配 把结果缓存用于后续的查询
# DSL过滤-------相当于精确查找
GET pethome/user/_search
{"query": {"bool": {"must": [{"match": {"name": "wenda"}}],"filter": [{"term": {"age": "20"}},{"range": {"size": {"gte": 160,"lte": 170}}}]}}, "size": 2,"from": 0,"sort": [{"id": {"order": "asc"}}]
}

分词器

单字,双字,庖丁,IK

IK分词器
安装

先关闭ES与Kibana,然后解压elasticsearch-analysis-ik-5.2.2.zip文件,并将其内容放置于ES根目录/plugins/ik

测试分词器
POST _analyze
{"analyzer":"ik_smart","text":"中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"
}
文档映射(字段类型设置)

ES的文档映射(mapping)机制用于进行字段类型确认,将每个字段匹配为一种确定的数据类型。

ES字段类型
① 基本字段类型
字符串:text(分词),keyword(不分词)   StringField(不分词文本),TextFiled(要分词文本)text默认为全文文本,keyword默认为非全文文本
数字:long,integer,short,double,float
日期:date
逻辑:boolean
{user:{“key”:value}}
{hobbys:[xxx,xx]}
② 复杂数据类型
对象类型:object
数组类型:array
地理位置:geo_point,geo_shape
默认映射

查看索引类型的映射配置:GET {indexName}/_mapping/{typeName}
ES在没有配置Mapping的情况下新增文档,ES会尝试对字段类型进行猜测,并动态生成字段和类型的映射关系。
在这里插入图片描述

kibana
GET pethome/user/_mappingPOST pethome/employee2/_mapping
{"employee2": {"properties": {"id": {"type": "long"},"username": {"type": "text","analyzer": "ik_smart","search_analyzer": "ik_smart"},"password": {"type": "keyword"}}}
}GET pethome/employee2/_mapping

Java操作ES

导入依赖
	<dependency><groupId>org.elasticsearch.client</groupId><artifactId>transport</artifactId><version>5.2.2</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-api</artifactId><version>2.7</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-core</artifactId><version>2.7</version></dependency>
crud实现
import org.elasticsearch.action.delete.DeleteRequestBuilder;
import org.elasticsearch.action.index.IndexRequestBuilder;
import org.elasticsearch.action.search.SearchRequestBuilder;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.update.UpdateRequestBuilder;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.sort.SortOrder;
import org.elasticsearch.transport.client.PreBuiltTransportClient;
import org.junit.Test;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.HashMap;
import java.util.Map;public class ESTestNew {//创建ES的客户端对象public static TransportClient getClient(){TransportClient client = null;try {client = new PreBuiltTransportClient(Settings.EMPTY).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));} catch (UnknownHostException e) {e.printStackTrace();}return client;}@Testpublic void testAddIndex(){TransportClient client = getClient();for (int i = 0; i < 50; i++) {IndexRequestBuilder builder = client.prepareIndex("pethome", "wxuser", String.valueOf(i));Map<String, Object> map = new HashMap<>();// 添加数据map.put("id",i);map.put("name","玛利亚"+i);map.put("age",18+i);map.put("sex",i%2);map.put("size",150+i);map.put("intro","haha"+i);builder.setSource(map);// 执行创建builder.get();}// 关闭资源client.close();}@Testpublic void testUpdate(){TransportClient client = getClient();// 指定要执行的操作对象UpdateRequestBuilder builder = client.prepareUpdate("pethome", "wxuser", String.valueOf(0));Map<String, Object> map = new HashMap<>();map.put("id",0);map.put("name","玛利亚000");map.put("age",18);map.put("sex",0);map.put("size",155);map.put("intro","haha000");builder.setDoc(map).get();client.close();}@Testpublic void testDel(){TransportClient client = getClient();DeleteRequestBuilder builder = client.prepareDelete("pethome", "wxuser", String.valueOf(0));builder.get();client.close();}@Testpublic void testQuery(){TransportClient client = getClient();SearchRequestBuilder builder = client.prepareSearch("pethome");builder.setTypes("wxuser");// 指定查询那个文件类型builder.setFrom(0);//起始位置builder.setSize(5);//每页条数builder.addSort("id", SortOrder.ASC);//设置排序// 添加筛选条件BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();boolQuery.must(QueryBuilders.matchQuery("name","玛利亚"));boolQuery.filter(QueryBuilders.termQuery("sex",1));boolQuery.filter(QueryBuilders.rangeQuery("size").gte(150).lte(180));SearchResponse response = builder.setQuery(boolQuery).get();SearchHits hits = response.getHits();System.out.println(hits.getTotalHits());SearchHit[] searchHits = hits.getHits();for (SearchHit searchHit : searchHits) {System.out.println(searchHit.getSource());}client.close();}
}

相关文章:

B081-Lucene+ElasticSearch

目录 认识全文检索概念lucene原理全文检索的特点常见的全文检索方案 Lucene创建索引导包分析图代码 搜索索引分析图代码 ElasticSearch认识ElasticSearchES与Kibana的安装及使用说明ES相关概念理解和简单增删改查ES查询DSL查询DSL过滤 分词器IK分词器安装测试分词器 文档映射(字…...

机器学习:塑造未来的核心力量

着科技的飞速发展&#xff0c;机器学习已经成为我们生活中不可或缺的一部分。无论是搜索引擎、推荐系统&#xff0c;还是自动驾驶汽车和机器人&#xff0c;都依赖于机器学习算法。本文将探讨机器学习的基本概念、应用领域以及未来发展趋势。 一、机器学习的基本概念 机器学习…...

RK3568-i2c-适配8010rtc时钟芯片

硬件连接 从硬件原理图中可以看出&#xff0c;rtc时钟芯片挂载在i2c3总线上&#xff0c;设备地址需要查看芯片数据手册。编写设备树 &i2c3 {status "okay";rx8010: rx801032 {compatible "epson,rx8010";reg <0x32>;}; };使能驱动 /kernel/…...

Spring Security - 基于内存快速demo

基于内存方式 - 只作学习参考1.引入依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency>2.login.html、index.html、fail.htmllogin.html:<form method…...

6 | 从文本文件中读取单词并输出不重复的单词列表

Transformation 操作 Transformation 操作是用于从一个 RDD(Resilient Distributed Dataset)创建一个新的 RDD,通常是通过对原始 RDD 的元素进行映射、筛选、分组等操作来实现的。Transformation 操作不会立即执行,而是惰性计算,只有在 Action 操作触发时才会真正执行。以…...

【微信小程序篇】- 多环境(版本)配置

最近自己在尝试使用AIGC写一个小程序&#xff0c;页面、样式、包括交互函数AIGC都能够帮我完成(不过这里有一点问题AIGC的上下文关联性还是有限制&#xff0c;会经常出现对于需求理解跑偏情况&#xff0c;需要不断的重复强调&#xff0c;并纠正错误&#xff0c;才能得到你想要的…...

ssh配置(一、GitLabGitHub)

一. 为什么配置ssh 使用 ssh 克隆项目&#xff0c;更加安全方便。 git clone 项目时一般使用两种协议 https 和 ssh 。 二. 原理的通俗解释 ssh 解决的问题是登录时的用户身份验证问题&#xff0c;默认使用 RSA&#xff08;也支持其他算法&#xff1a; RSA、DSA、ECDSA、EdD…...

开了抖店后就可以直播带货了吗?想在抖音带货的,建议认真看完!

我是王路飞。 关于抖店和直播带货的关系&#xff0c;其实很多人经常搞不清楚。 不然的话&#xff0c;也不会有这个问题的出现了&#xff1a;开了抖店后就可以直播带货了吗&#xff1f; 在我看来&#xff0c;这个问题很简单&#xff0c;但在不了解抖音电商和直播带货其中门道…...

【深度学习实验】数据可视化

目录 一、实验介绍 二、实验环境 三、实验内容 0. 导入库 1. 归一化处理 归一化 实验内容 2. 绘制归一化数据折线图 报错 解决 3. 计算移动平均值SMA 移动平均值 实验内容 4. 绘制移动平均值折线图 5 .同时绘制两图 6. array转换为tensor张量 7. 打印张量 一、…...

【Golang】函数篇

1、golang函数基本定义与使用 func 函数名 (形参列表) (返回值类型列表) {函数体return 返回值列表 }其中func用于表明这是一个函数&#xff0c;剩下的东西与其他语言的函数基本一致&#xff0c;在定义与使用的时候注意函数名、参数、返回值书写的位置即可。下面使用一个例子…...

在ubuntu上安装ns2和nam(ubuntu16.04)

在ubuntu上安装ns2和nam 版本选择安装ns2安装nam 版本选择 首先&#xff0c;版本的合理选择可以让我们避免很多麻烦 经过测试&#xff0c;ubuntu的版本选择为ubuntu16.04&#xff0c;ns2的版本选择为ns-2.35&#xff0c;nam包含于ns2 资源链接(百度网盘) 链接:https://pan.bai…...

SpringCloudAlibaba之Sentinel介绍

文章目录 1 Sentinel1.1 Sentinel简介1.2 核心概念1.2.1 资源1.2.2 规则 1.3 入门Demo1.3.1 引入依赖1.3.2 集成Spring1.3.3 Spring中资源规则 1.4 Sentinel控制台1.5 核心原理1.5.1 NodeSelectorSlot1.5.2 ClusterBuilderSlot1.5.3 LogSlot1.5.4 StatisticSlot1.5.5 Authority…...

苹果微信聊天记录删除了怎么恢复?果粉原来是这样恢复的

粗心大意删除了微信聊天记录&#xff1f;有时候&#xff0c;一些小伙伴可能只是想要删除一部分聊天记录&#xff0c;但是在进行批量删除时&#xff0c;不小心勾选到了很重要的对话&#xff0c;从而导致记录丢失。 如果这时想找回聊天记录该怎么办&#xff1f;微信聊天记录删除…...

JVM的故事——虚拟机字节码执行引擎

虚拟机字节码执行引擎 文章目录 虚拟机字节码执行引擎一、概述二、运行时栈帧结构三、方法调用 一、概述 执行引擎Java虚拟机的核心组成之一&#xff0c;它是由软件自行实现的&#xff0c;能够执行那些不被硬件直接支持的指令集格式。 对于不同的虚拟机实现&#xff0c;执行引…...

设计模式之适配器与装饰器

目录 适配器模式 简介 角色 使用 优缺点 使用场景 装饰器模式 简介 优缺点 模式结构 使用 使用场景 适配器模式 简介 允许将不兼容的对象包装成一个适配器类&#xff0c;使得其他类可以通过适配器类与原始对象进行交互&#xff0c;从而提高兼容性 角色 目标角色…...

服务器数据恢复- Ext4文件系统分区挂载报错的数据恢复案例

Ext4文件系统相关概念&#xff1a; 块组&#xff1a;Ext4文件系统的空间被划分为若干个块组&#xff0c;每个块组内的结构大致相同。 块组描述符表&#xff1a;每个块组都对应一个块组描述符&#xff0c;这些块组描述符统一放在文件系统的前部&#xff0c;称为块组描述符表。每…...

19-springcloud(上)

一 微服务架构进化论 单体应用阶段 (夫妻摊位) 在互联网发展的初期&#xff0c;用户数量少&#xff0c;一般网站的流量也很少&#xff0c;但硬件成本较高。因此&#xff0c;一般的企业会将所有的功能都集成在一起开发一个单体应用&#xff0c;然后将该单体应用部署到一台服务器…...

前端基础---HTML笔记汇总一

HTML定义 HTML超文本标记语言——HyperText Markup Language。 超文本是什么&#xff1f; 链接标记是什么&#xff1f; 标记也叫标签&#xff0c;带尖括号的文本 标签分类 单标签:只有开始标签&#xff0c;没有结束标签(<br>换行 <hr>水平线 <img> 图像标…...

智汇云舟亮相中国安防工程商集成商大会

智汇云舟亮相中国安防工程商集成商大会&#xff0c;以视频孪生驱动安防行业数字化转型 近日&#xff0c;由中国安全防范产品行业协会指导&#xff0c;永泰传媒主办的中国安防工程商&#xff08;系统集成商&#xff09;大会暨第69届中国安防新产品、新技术成果展示在石家庄圆满…...

使用 Sealos 在离线环境中光速安装 K8s 集群

作者&#xff1a;尹珉。Sealos 开源社区 Ambassador&#xff0c;云原生爱好者。 当容器化交付遇上离线环境 在当今快节奏的软件交付环境中&#xff0c;容器化交付已经成为许多企业选择的首选技术手段。在可以访问公网的环境下&#xff0c;容器化交付不仅能够提高软件开发和交付…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...