当前位置: 首页 > news >正文

时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来

时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来

目录

    • 时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现PSO-LSSVM时间序列预测未来(粒子群优化最小二乘支持向量机,优化RBF核函数的gam和sig);
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测,运行主程序PSO_LSSVMTSF即可,其余为函数文件,无需运行;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。

模型描述

LSSVM参数优化问题没有确定或通用的共识方法。由于智能算法在预测模型参数的选取确定方面具有稳健性和通用性,预测模型参数最优化过程中主要采用了遗传算法、果蝇优化算法、萤火虫算法、粒子群算法(PSO)、网格搜索算法、神经网络等智能算法。粒子群算法不断调整自身和种群最优位置关系,具有更强寻优能力。因此,为进一步得到可靠的模型参数,可沿用粒子群算法进行尝试验证。

9

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来
%%  参数设置
pop = 5;              % 种群数目
Max_iter = 50;         % 迭代次数
dim = 2;               % 优化参数个数
lb = [10,   10];       % 下限
ub = [1000, 1000];       % 上限%% 优化函数
fobj = @(x)fitnessfunclssvm(x, p_train, t_train);%% 优化
[Best_pos, Best_score, curve] = PSO(pop, Max_iter, lb, ub, dim, fobj);%% LSSVM参数设置
type       = 'f';                % 模型类型 回归
kernel     = 'RBF_kernel';       % RBF 核函数
proprecess = 'preprocess';       % 是否归一化%% 建立模型
gam = Best_score(1);  
sig = Best_score(2);
model = initlssvm(p_train, t_train, type, gam, sig, kernel, proprecess);%% 训练模型
model = trainlssvm(model);%% 模型预测
t_sim1 = simlssvm(model, p_train);
t_sim2 = simlssvm(model, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:)); end%%%%%%%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%%%%if(pbest(j)<gbest)g=p(j,:);gbest=pbest(j);end%%%%%%%%%%%%%%%%%跟新位置和速度值%%%%%%%%%%%%%%%%%%%%%v(j,:)=w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...+c2*rand*(g-x(j,:));x(j,:)=x(j,:)+v(j,:);%%%%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%%%%if length(Vmax)==1for ii=1:Dif (v(j,ii)>Vmax)  |  (v(j,ii)< Vmin)v(j,ii)=rand * (Vmax-Vmin)+Vmin;endif (x(j,ii)>Xmax)  |  (x(j,ii)< Xmin)x(j,ii)=rand * (Xmax-Xmin)+Xmin;endend           elsefor ii=1:Dif (v(j,ii)>Vmax(ii))  |  (v(j,ii)< Vmin(ii))v(j,ii)=rand * (Vmax(ii)-Vmin(ii))+Vmin(ii);endif (x(j,ii)>Xmax(ii))  |  (x(j,ii)< Xmin(ii))x(j,ii)=rand * (Xmax(ii)-Xmin(ii))+Xmin(ii);endendendend%%%%%%%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%%%%%%%%Convergence_curve(i)=gbest;%记录训练集的适应度值

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

相关文章:

时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来

时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来 目录 时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab实现PSO-LSSVM时间序列预测未…...

java IO流(二) 字符流 缓冲流 原始流与缓冲流性能分析

字符流 前面学习的字节流虽然可以读取文件中的字节数据&#xff0c;但是如果文件中有中文&#xff0c;使用字节流来读取&#xff0c;就有可能读到半个汉字的情况&#xff0c;这样会导致乱码。虽然使用读取全部字节的方法不会出现乱码&#xff0c;但是如果文件过大又不太合适。…...

复现XSS漏洞及分析

XSS漏洞概述&#xff1a; 类型一&#xff1a;反射型 类型二&#xff1a;存储型 类型三&#xff1a;DOM型 复现20字符短域名绕过 一、安装BEEF 1、在Kali中运行apt install beef-xss 2、运行beef 3、在浏览器访问 二、安装galleryCMS *遇到一点小问题 提示"last…...

Vue组件之间传值

聊一聊vue里面组件之间的传值 首先总结一下vue里面传值的几种关系&#xff1a; 如上图所示, A与B、A与C、B与D、C与F组件之间是父子关系&#xff1b; B与C之间是兄弟关系&#xff1b;A与D、A与E之间是隔代关系&#xff1b; D与F是堂兄关系&#xff0c;针对以上关系 我们把组件…...

windows查看端口占用,通过端口找进程号(查找进程号),通过进程号定位应用名(查找应用)(netstat、tasklist)

文章目录 通过端口号查看进程号netstat通过进程号定位应用程序tasklist 通过端口号查看进程号netstat 在Windows系统中&#xff0c;可以使用 netstat 命令来查看端口的占用情况。以下是具体的步骤&#xff1a; 打开命令提示符&#xff08;CMD&#xff09;&#xff1a;按WinR组…...

Weblogic SSRF【漏洞复现】

文章目录 漏洞测试注入HTTP头&#xff0c;利用Redis反弹shell redis不能启动问题解决 Path : vulhub/weblogic/ssrf 编译及启动测试环境 docker compose up -dWeblogic中存在一个SSRF漏洞&#xff0c;利用该漏洞可以发送任意HTTP请求&#xff0c;进而攻击内网中redis、fastcgi…...

文件读取漏洞复现(Metinfo 6.0.0)

文章目录 安装环境启动环境漏洞复现代码审计 安装环境 安装phpstudy&#xff0c;下载MetInfo 6.0.0版本软件&#xff0c;复制到phpstudy目录下的www目录中。 打开phpstudy&#xff0c;访问浏览器127.0.0.1/MetInfo6.0.0/install/index.php&#xff0c;打开Meinfo 6.0.0主页&a…...

【工程实践】使用git clone 批量下载huggingface模型文件

前言 经常需要下载模型到服务器&#xff0c;使用git clone方法可以快速实现模型下载。 1.选定要下载的模型 以下载moka-ai/m3e-base为例&#xff0c;切换到Files and versions。 2.更改下载网页的url 如上图所示&#xff0c;当前要下载模型网页的url为&#xff1a; https://hu…...

2020 杭电多校第三场 H Triangle Collision(反射套路 + 绕点旋转 + 矢量

2020 杭电多校第三场 H. Triangle Collision(反射套路 绕点旋转 矢量分解) 大意&#xff1a;给出一个等边三角形 &#xff0c; 以底边中线建立坐标系 &#xff0c; 给出三角形中一点 &#xff0c; 和其初始速度 &#xff0c; 小球在等边三角形中做完全弹性碰撞 &#xff0c; …...

Servlet属性、监听者和会话

没有servlet能单独存在。在当前的现代Web应用中&#xff0c;许多组件都是在一起协作共同完成一个目标。怎么让这些组件共享信息&#xff1f;如何隐藏信息&#xff1f;怎样让信息做到线程安全&#xff1f; 1 属性和监听者 1.1 初始化 容器初始化一个servlet时&#xff0c;会为…...

Gin学习记录2——路由

路由 一. 常规路由二. 动态路由三. 带参数的路由3.1 GET3.2 POST3.3 绑定 四. 简单的路由组五. 文件分组 一. 常规路由 package mainimport ("net/http""github.com/gin-gonic/gin" )func index(ctx *gin.Context) {ctx.String(http.StatusOK, "Hell…...

《计算机算法设计与分析》第一章:算法概述

第一章 算法概述 1.1 算法复杂性分析 公共标准&#xff1a;渐进时间复杂度 &#xff08;1&#xff09;大O表示法&#xff1a; 例如&#xff1a; 大O表示法和前面的最坏时间复杂度的区别在于&#xff1a;大O表示法表示的更为简洁&#xff0c; 而最坏时间复杂度相对就比较繁琐&am…...

华为数通方向HCIP-DataCom H12-821题库(单选题:201-220)

第201题 BGP 协议用​​ beer default-route-advertise​​ 命令来给邻居发布缺省路由,那么以下关于本地 BGP 路由表变化的描述&#xff0c;正确的是哪一项? A、在本地 BGP 路由表中生成一条活跃的缺省路由并下发给路由表 B、在本地 BGP 路由表中生成一条不活跃的缺省路由&…...

使用ELK收集解析nginx日志和kibana可视化仪表盘

文章目录 ELK生产环境配置filebeat 配置logstash 配置 kibana仪表盘配置配置nginx转发ES和kibanaELK设置账号和密码 ELK生产环境配置 ELK收集nginx日志有多种方案&#xff0c;一般比较常见的做法是在生产环境服务器搭建filebeat 收集nginx的文件日志并写入到队列&#xff08;k…...

【Sentinel】ProcessorSlotChain处理器插槽链与Node

文章目录 1、Sentinel的基本概念2、ProcessorSlotChain3、Node 1、Sentinel的基本概念 Sentinel实现限流、隔离、降级、熔断等功能&#xff0c;本质要做的就是两件事情&#xff1a; 统计数据&#xff1a;统计某个资源的访问数据&#xff08;QPS、RT等信息&#xff09;规则判断…...

数据库管理系统(DBMS)的事务四大特性(ACID)以及事务的四种隔离级别

一、什么是ACID&#xff1f; ACID是原子性&#xff08;Atomicity&#xff09;、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09; 的缩写&#xff0c;是在可靠数据库管理系统&#xff08;DBMS&…...

leetcode 234. 回文链表

2023.9.5 本题先将链表的节点值移到数组中&#xff0c;再用双指针去判断该数组是否为回文的即可。 代码如下&#xff1a; /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* …...

Scala集合继承体系图

Scala集合简介 1&#xff09; Scala 的集合有三大类&#xff1a;序列 Seq、集Set、映射 Map&#xff0c;所有的集合都扩展自 Iterable特质。 2&#xff09; 对于几乎所有的集合类&#xff0c;Scala 都同时提供了可变和不可变的版本&#xff0c;分别位于以下两个包 不可变集合…...

《Go 语言第一课》课程学习笔记(十五)

并发 Go 的并发方案&#xff1a;goroutine 并行&#xff08;parallelism&#xff09;&#xff0c;指的就是在同一时刻&#xff0c;有两个或两个以上的任务&#xff08;这里指进程&#xff09;的代码在处理器上执行。 并发不是并行&#xff0c;并发关乎结构&#xff0c;并行关…...

练习 Qt 实时显示鼠标坐标位置

Qt 入门实战教程&#xff08;目录&#xff09; 前驱课程 本文是文章 Qt鼠标点击事件处理&#xff1a;显示鼠标点击位置&#xff08;完整示例&#xff09; 的一个作业&#xff08;下文称之为“前驱课程”&#xff09;。 前驱课程中&#xff0c;我们完整的展示了如何在QtCreat…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...