Redis面试题(笔记)
目录
1.缓存穿透
2.缓存击穿
3.缓存雪崩
小结
4.缓存-双写一致性
5.缓存-持久性
6.缓存-数据过期策略
7.缓存-数据淘汰策略
数据淘汰策略-使用建议
数据淘汰策略总结
8.redis分布式锁
setnx
redission
主从一致性
9.主从复制、主从同步
10.哨兵模式
服务状态监控
redis集群(哨兵模式)脑裂
11.分片集群
Redis是单线程的,但是为什么还那么快?
1.缓存穿透
面试官:什么是缓存穿透 ? 怎么解决 ?
候选人:
嗯~~,我想一下
缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。这种情况大概率是遭到了攻击。
解决方案一:缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存, 例如:{key:1,value: null}
优点:简单
缺点:消耗内存,可能会发送不一致的问题
(可能会导致当数据真的存储了,查询缓存还是null,可以设置缓存过期时间)
解决方案二,我们通常都会用布隆过滤器来解决它
候选人:
嗯,是这样~
布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是redisson实现的布隆过滤器。
它的底层主要是先去初始化一个比较大数组,里面存放的二进制0或1。在一开始都是0,当一个key来了之后经过3次hash计算,模于数组长度找到数据的下标然后把数组中原来的0改为1,这样的话,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。
当然是有缺点的,布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%,其实这个误判是必然存在的,要不就得增加数组的长度,其实已经算是很划分了,5%以内的误判率一般的项目也能接受,不至于高并发下压倒数据库。

2.缓存击穿
面试官:什么是缓存击穿 ? 怎么解决 ?
候选人:缓存击穿的意思是对于设置了过期时间的key,缓存在某个时间点过期的时候,恰好这时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。
解决方案有两种方式:
解决方案一:互斥锁 (强一致的业务,跟钱相关的业务)
解决方案二:逻辑过期 (注重体验,高可用性)
第一可以使用互斥锁:当缓存失效时,不立即去load db,先使用如 Redis 的 setnx 去设置一个互斥锁,当操作成功返回时再进行 load db的操作并回设缓存,否则重试get缓存的方法
第二种方案可以设置当前key逻辑过期,大概是思路如下:
①:在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间
②:当查询的时候,从redis取出数据后判断时间是否过期
③:如果过期则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据不是最新
当然两种方案各有利弊:
如果选择数据的强一致性,建议使用分布式锁的方案,性能上可能没那么高,锁需要等,也有可能产生死锁的问题
如果选择key的逻辑删除,则优先考虑的高可用性,性能比较高,但是数据同步这块做不到强一致。

3.缓存雪崩

面试官:什么是缓存雪崩 ? 怎么解决 ?
候选人:
嗯!!
缓存雪崩意思是设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多key,击穿是某一个key缓存。
解决方案主要是可以将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
解决方案有以下四种
解决方案一:给不同的Key的TTL添加随机值
解决方案二:利用Redis集群提高服务的可用性
解决方案三:给缓存业务添加降级限流策略(降级可作为系统的保底策略,适用于穿透、击穿、雪崩)
解决方案四:给业务添加多级缓存
小结

4.缓存-双写一致性
双写一致性:当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致
延时双删

解决方式一,基于MQ异步通知保证数据的最终一致性

解决方式二:基于Canal的异步通知
----------------------------------------------------------------------------------------------------------------------
面试官:redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)
候选人:嗯!就说我最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,需要让数据库与redis高度保持一致,因为要求时效性比较高,我们当时采用的读写锁保证的强一致性。
我们采用的是redisson实现的读写锁,在读的时候添加共享锁,可以保证读读不互斥,读写互斥。当我们更新数据的时候,添加排他锁,它是读写,读读都互斥,这样就能保证在写数据的同时是不会让其他线程读数据的,避免了脏数据。这里面需要注意的是读方法和写方法上需要使用同一把锁才行。
----------------------------------------------------------------------------------------------------------------------
面试官:那这个排他锁是如何保证读写、读读互斥的呢?
候选人:其实排他锁底层使用也是setnx,保证了同时只能有一个线程操作锁住的方法
面试官:你听说过延时双删吗?为什么不用它呢?
候选人:延迟双删,如果是写操作,我们先把缓存中的数据删除,然后更新数据库,最后再延时删除缓存中的数据,其中这个延时多久不太好确定,在延时的过程中可能会出现脏数据,并不能保证强一致性,所以没有采用它。
----------------------------------------------------------------------------------------------------------------------
面试官:redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)
候选人:嗯!就说我最近做的这个项目,里面有xxxx(根据自己的简历上写)的功能,数据同步可以有一定的延时(符合大部分业务)
我们当时采用的阿里的canal组件实现数据同步:不需要更改业务代码,部署一个canal服务。canal服务把自己伪装成mysql的一个从节点,当mysql数据更新以后,canal会读取binlog数据,然后在通过canal的客户端获取到数据,更新缓存即可。
5.缓存-持久性
面试官:redis做为缓存,数据的持久化是怎么做的?
候选人:在Redis中提供了两种数据持久化的方式:
1、RDB (RDB的全称是Redis DataBase)
2、AOF (Append Only File)追加文件
面试官:这两种持久化方式有什么区别呢?
候选人:RDB是一个快照文件,它是把redis内存存储的数据写到磁盘上,当redis实例宕机恢复数据的时候,方便从RDB的快照文件中恢复数据。
AOF的含义是追加文件,当redis操作写命令的时候,都会存储这个文件中,当redis实例宕机恢复数据的时候,会从这个文件中再次执行一遍命令来恢复数据
----------------------------------------------------------------------------------------------------------------------
面试官:这两种方式,哪种恢复的比较快呢?
候选人:RDB因为是二进制文件,在保存的时候体积也是比较小的,它恢复的比较快,但是它有可能会丢数据,我们通常在项目中也会使用AOF来恢复数据,虽然AOF恢复的速度慢一些,但是它丢数据的风险要小很多,在AOF文件中可以设置刷盘策略,我们当时设置的就是每秒批量写入一次命令

6.缓存-数据过期策略
面试官:Redis的数据过期策略有哪些 ?
候选人:
嗯~,在redis中提供了两种数据过期删除策略
第一种是惰性删除,在设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key。
第二种是 定期删除,就是说每隔一段时间,我们就对一些key进行检查,删除里面过期的key
定期清理的两种模式:
- SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的 hz 选项来调整这个次数
- FAST模式执行频率不固定,每次事件循环会尝试执行,但两次间隔不低于2ms,每次耗时不超过1ms
Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用。
7.缓存-数据淘汰策略
面试官:Redis的数据淘汰策略有哪些 ?
候选人:
嗯,这个在redis中提供了很多种,默认是noeviction,不删除任何数据,内部不足直接报错
是可以在redis的配置文件中进行设置的,里面有两个非常重要的概念,一个是LRU,另外一个是LFU
LRU的意思就是最少最近使用,用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
LFU的意思是最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高
我们在项目设置的allkeys-lru,挑选最近最少使用的数据淘汰,把一些经常访问的key留在redis中

数据淘汰策略-使用建议
1.优先使用 allkeys-lru 策略。充分利用LRU 算法的优势,把最近最常访问的数据留在缓存中。如果业务有明显的冷热数据区分,建议使用。
2.如果业务中数据访问频率差别不大,没有明显冷热数据区分,建议使用 allkeys-random,随机选择淘汰
3.如果业务中有置顶的需求,可以使用 volatile-lru 策略,同时置顶数据不设置过期时间,这些数据就一直不被删除,会淘汰其他设置过期时间的数据
4.如果业务中有短时高频访问的数据,可以使用 allkeys-lfu 或 volatile-lfu 策略
----------------------------------------------------------------------------------------------------------------------
面试官:数据库有1000万数据 ,Redis只能缓存20w数据, 如何保证Redis中的数据都是热点数据 ?
候选人:
嗯,我想一下~~
可以使用 allkeys-lru (挑选最近最少使用的数据淘汰)淘汰策略,那留下来的都是经常访问的热点数据
面试官:Redis的内存用完了会发生什么?
候选人:
嗯~,这个要看redis的数据淘汰策略是什么,如果是默认的配置,redis内存用完以后则直接报错。我们当时设置的 allkeys-lru 策略。把最近最常访问的数据留在缓存中。
数据淘汰策略总结
1.Redis提供了8种不同的数据淘汰策略,默认是noeviction不删除任何数据,内存不足直接报错
2.LRU:最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰
优先级越高。
3.LFU:最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高
平时开发过程中用的比较多的就是allkeys-lru (结合自己的业务场景
8.redis分布式锁
使用场景,如果不适用分布式锁,在集群下可能会出现超卖的情况
-
setnx
面试官:Redis分布式锁如何实现 ?
候选人:嗯,在redis中提供了一个命令setnx(SET if not exists)
由于redis的单线程的,用了命令之后,只能有一个客户端对某一个key设置值,在没有过期或删除key的时候是其他客户端是不能设置这个key的
-
redission
面试官:好的,那你如何控制Redis实现分布式锁有效时长呢?
候选人:嗯,的确,redis的setnx指令不好控制这个问题,我们当时采用的redis的一个框架redisson实现的。
在redisson中需要手动加锁,并且可以控制锁的失效时间和等待时间,当锁住的一个业务还没有执行完成的时候,在redisson中引入了一个看门狗机制,就是说每隔一段时间就检查当前业务是否还持有锁,如果持有就增加加锁的持有时间,当业务执行完成之后需要使用释放锁就可以了
还有一个好处就是,在高并发下,一个业务有可能会执行很快,先客户1持有锁的时候,客户2来了以后并不会马上拒绝,它会自旋不断尝试获取锁,如果客户1释放之后,客户2就可以马上持有锁,性能也得到了提升。
面试官:好的,redisson实现的分布式锁是可重入的吗?
候选人:嗯,是可以重入的。这样做是为了避免死锁的产生。这个重入其实在内部就是判断是否是当前线程持有的锁,如果是当前线程持有的锁就会计数,如果释放锁就会在计算上减一。在存储数据的时候采用的hash结构,大key可以按照自己的业务进行定制,其中小key是当前线程的唯一标识,value是当前线程重入的次数
-
主从一致性
面试官:redisson实现的分布式锁能解决主从一致性的问题吗
候选人:这个是不能的,比如,当线程1加锁成功后,master节点数据会异步复制到slave节点,此时当前持有Redis锁的master节点宕机,slave节点被提升为新的master节点,假如现在来了一个线程2,再次加锁,会在新的master节点上加锁成功,这个时候就会出现两个节点同时持有一把锁的问题。
我们可以利用redisson提供的红锁来解决这个问题,它的主要作用是,不能只在一个redis实例上创建锁,应该是在多个redis实例上创建锁,并且要求在大多数redis节点上都成功创建锁,红锁中要求是redis的节点数量要过半。这样就能避免线程1加锁成功后master节点宕机导致线程2成功加锁到新的master节点上的问题了。
但是,如果使用了红锁,因为需要同时在多个节点上都添加锁,性能就变的很低了,并且运维维护成本也非常高,所以,我们一般在项目中也不会直接使用红锁,并且官方也暂时废弃了这个红锁
面试官:好的,如果业务非要保证数据的强一致性,这个该怎么解决呢?
候选人:嗯~,redis本身就是支持高可用的,做到强一致性,就非常影响性能,所以,如果有强一致性要求高的业务,建议使用zookeeper实现的分布式锁,它是可以保证强一致性的。
9.主从复制、主从同步
面试官:那你来介绍一下主从同步
候选人:嗯,是这样的,单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,可以搭建主从集群,实现读写分离。一般都是一主多从,主节点负责写数据,从节点负责读数据,主节点写入数据之后,需要把数据同步到从节点中
面试官:能说一下,主从同步数据的流程
候选人:嗯~~,好!主从同步分为了两个阶段,一个是全量同步,一个是增量同步
全量同步是指从节点第一次与主节点建立连接的时候使用全量同步,流程是这样的:
第一:从节点请求主节点同步数据,其中从节点会携带自己的replication id和offset偏移量。
第二:主节点判断是否是第一次请求,主要判断的依据就是,主节点与从节点是否是同一个replication id,如果不是,就说明是第一次同步,那主节点就会把自己的replication id和offset发送给从节点,让从节点与主节点的信息保持一致。
第三:在同时主节点会执行bgsave,生成rdb文件后,发送给从节点去执行,从节点先把自己的数据清空,然后执行主节点发送过来的rdb文件,这样就保持了一致
当然,如果在rdb生成执行期间,依然有请求到了主节点,而主节点会以命令的方式记录到缓冲区,缓冲区是一个日志文件,最后把这个日志文件发送给从节点,这样就能保证主节点与从节点完全一致了,后期再同步数据的时候,都是依赖于这个日志文件,这个就是全量同步
增量同步指的是,当从节点服务重启之后,数据就不一致了,所以这个时候,从节点会请求主节点同步数据,主节点还是判断不是第一次请求,不是第一次就获取从节点的offset值,然后主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步

10.哨兵模式
-
服务状态监控
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
- 主观下线: 如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线
- 客观下线:若超过指定数量 (quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半

-
redis集群(哨兵模式)脑裂

----------------------------------------------------------------------------------------------------------------------
面试官:怎么保证Redis的高并发高可用
候选人:首先可以搭建主从集群,再加上使用redis中的哨兵模式,哨兵模式可以实现主从集群的自动故障恢复,里面就包含了对主从服务的监控、自动故障恢复、通知;如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主;同时Sentinel也充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端,所以一般项目都会采用哨兵的模式来保证redis的高并发高可用
面试官:你们使用redis是单点还是集群,哪种集群
候选人:嗯!,我们当时使用的是主从(1主1从)加哨兵。一般单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点。尽量不做分片集群。因为集群维护起来比较麻烦,并且集群之间的心跳检测和数据通信会消耗大量的网络带宽,也没有办法使用lua脚本和事务
面试官:redis集群脑裂,该怎么解决呢?
候选人:嗯! 这个在项目很少见,不过脑裂的问题是这样的,我们现在用的是redis的哨兵模式集群的
有的时候由于网络等原因可能会出现脑裂的情况,就是说,由于redis master节点和redis salve节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到master,所以通过选举的方式提升了一个salve为master,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在old master那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将old master降为salve,这时再从新master同步数据,这会导致old master中的大量数据丢失。
关于解决的话,我记得在redis的配置中可以设置:第一可以设置最少的salve节点个数,比如设置至少要有一个从节点才能同步数据,第二个可以设置主从数据复制和同步的延迟时间,达不到要求就拒绝请求,就可以避免大量的数据丢失
11.分片集群
面试官:redis的分片集群有什么作用
候选人:分片集群主要解决的是,海量数据存储的问题,集群中有多个master,每个master保存不同数据,并且还可以给每个master设置多个slave节点,就可以继续增大集群的高并发能力。同时每个master之间通过ping监测彼此健康状态,就类似于哨兵模式了。当客户端请求可以访问集群任意节点,最终都会被转发到正确节点
面试官:Redis分片集群中数据是怎么存储和读取的?
候选人:
嗯~,在redis集群中是这样的
Redis 集群引入了哈希槽的概念,有 16384 个哈希槽,集群中每个主节点绑定了一定范围的哈希槽范围, key通过 CRC16 校验后对 16384 取模来决定放置哪个槽,通过槽找到对应的节点进行存储。
取值的逻辑是一样的


-
Redis是单线程的,但是为什么还那么快?
面试官:Redis是单线程的,但是为什么还那么快?
候选人:
嗯,这个有几个原因吧~~~
1、完全基于内存的,C语言编写
2、采用单线程,避免不必要的上下文切换可竞争条件
3、使用多路I/O复用模型,非阻塞IO
例如:bgsave 和 bgrewriteaof 都是在后台执行操作,不影响主线程的正常使用,不会产生阻塞
面试官:能解释一下I/O多路复用模型?
候选人:嗯~~,I/O多路复用是指利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的I/O多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。
其中Redis的网络模型就是使用I/O多路复用结合事件的处理器来应对多个Socket请求,比如,提供了连接应答处理器、命令回复处理器,命令请求处理器;
在Redis6.0之后,为了提升更好的性能,在命令回复处理器使用了多线程来处理回复事件,在命令请求处理器中,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时候,依然是单线程
相关文章:
Redis面试题(笔记)
目录 1.缓存穿透 2.缓存击穿 3.缓存雪崩 小结 4.缓存-双写一致性 5.缓存-持久性 6.缓存-数据过期策略 7.缓存-数据淘汰策略 数据淘汰策略-使用建议 数据淘汰策略总结 8.redis分布式锁 setnx redission 主从一致性 9.主从复制、主从同步 10.哨兵模式 服务状态监…...
iPhone 15 Pro展示设计:7项全新变化呈现
我们不应该再等iPhone 15 Pro在苹果9月12日的“Wonderlust”活动上发布了,而且可能会有很多升级。有传言称,iPhone 15 Pro将是自iPhone X以来最大的飞跃,这要归功于大量的新变化,从带有更薄边框的新钛框架到顶级A17仿生芯片和动作…...
【六袆 - Windows】PL/SQL instantclient安装包下载;PL/SQL双击登录配置
安装 PL/SQL 15 OMIT Oracle Instant Client Downloads for Microsoft Windows (x64) 64-bit https://www.oracle.com/database/technologies/instant-client/winx64-64-downloads.html 配置 # tnsnames.ora Network Configuration File:E:\oracle\product\10.2.0\db_1\ne…...
Springboot+mybatis-plus+dynamic-datasource 切换数据源失败问题总结
Springbootmybatis-plusdynamic-datasourceDruid 多数据源 切换数据源失败总结 文章目录 Springbootmybatis-plusdynamic-datasourceDruid 多数据源 切换数据源失败总结0.前言1. dynamic-datasource 切换数据源失败场景总结1. spring-batch整合情况下切换数据源异常解决办法&am…...
QuantLib学习笔记——InterestRate的应用
⭐️ 单利还是复利 巴菲特老爷子有句名言:“人生就像滚雪球,重要的是发现很湿的雪和很长的坡。” 很湿的雪,指的就是复利。很长的坡,指的就是时间。很湿的雪和很长的坡组合起来,就能滚成巨大的雪球。 哈哈࿰…...
记录--解决前端内存泄漏:问题概览与实用解决方案
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 内存泄漏是前端开发中的一个常见问题,可能导致项目变得缓慢、不稳定甚至崩溃。在本文中,我们将深入探讨在JavaScript、Vue和React项目中可能导致内存泄漏的情况,并提…...
IP初学习
1.IP报文 首部长度指的是报头长度,用于分离报头和有效载荷 2.网段划分 IP地址 目标网络 目标主机 3.例子 4.特殊的IP地址 5.真正的网络环境 6.调制解调器 “猫”,学名叫宽带无线猫 7.NAT 源IP在内网环境不断被替换 8.私有IP不能出现在公网上 因…...
live5555 testProgs目录
文章目录 测试testProgs视频流直播流注意: 测试 testProgs 当涉及到许多示例程序时,解释每一个都可能会变得非常冗长。然而,我可以为你提供一些关键示例程序的简要解释,以帮助你了解每个示例的用途和功能: testOnDem…...
yolov5模型s,l,m,x的区别
yolov5s 是什么?yolov5系列最小的模型,s是small。 适合什么情况下使用?适合在计算资源有限的设备上使用。如移动设备或边缘设备。 速度和准确率:速度最快,准确率最低。 输入分辨率:通常为640x640 # Param…...
Springboot 实践(13)spring boot 整合RabbitMq
前文讲解了RabbitMQ的下载和安装,此文讲解springboot整合RabbitMq实现消息的发送和消费。 1、创建web project项目,名称为“SpringbootAction-RabbitMQ” 2、修改pom.xml文件,添加amqp使用jar包 <!-- RabbitMQ --> <dependency&g…...
YoloV8改进策略:轻量级Slim Neck打造极致的YoloV8
文章目录 摘要Yolov8官方结果源码改进方法测试结果总结摘要 论文链接:https://arxiv.org/ftp/arxiv/papers/2206/2206.02424.pdf 作者研究了增强 CNN 学习能力的通用方法,例如 DensNet、VoVNet 和 CSPNet,然后根据这些方法的理论设计了 Slim-Neck 结构。 使用轻量级卷积…...
使用java代码给Excel加水印,代码全,进阶版
以下代码,亲测可以跑通 1、上一篇博客用了Apache POI库3.8的版本的形式对Excel加了水印,但是最近主线版本用了4.1.2的形式,由于为了保持版本的兼容性,下面有开发了Apache POI的4.1.2的版本号的方案。 pom文件为: <d…...
day37:网编day4,多点通信和并发服务器
一、广播接收方: #include <myhead.h>#define ERR_MSG(msg) do{\ fprintf(stderr,"__%d__\n",__LINE__);\ perror(msg);\ }while(0)#define BRD_IP "192.168.114.255" #define BRD_PORT 8888int main(int argc, const char *argv[]) {//…...
STM32 硬件IIC 控制OLED I2C卡死问题
1. STM32L151C8T6 硬件IIC 控制OLED 屏,OLED 驱动IC CH1116G, 查阅OLED 数据手册 2. STM32 硬件IIC 初始化,用的标准库,固件库 // stm32l151c8t6 as master, oled control ic (CH1116G) as slave, and communicate by master iic2 void STM3…...
Redis图文指南
1、什么是 Redis? Redis(REmote DIctionary Service)是一个开源的键值对数据库服务器。 Redis 更准确的描述是一个数据结构服务器。Redis 的这种特殊性质让它在开发人员中很受欢迎。 Redis不是通过迭代或者排序方式处理数据,而是…...
C++17 std::string_view介绍与使用
std::string_view介绍 std::string_view是C17增加的新内容。它是一个轻量级的、只读的字符串视图,可以用来表示一个字符串或字符串的一部分。std::string_view可以提高代码的可读性、可维护性和性能。 std::string_view与std::string的主要区别在于,st…...
写得了代码,焊得了板!嵌入式开发工程师必修之代码管理方案(下)
目录 极狐GitLab嵌入式开发场景解决方案 3.1 高可用部署与灾备 3.2 组织管理 3.3 分支策略 3.4 分支保护 3.5 推送规则 3.6 代码评审 3.7 数据保护 3.8 其他相关 本文来自 武让 极狐GitLab 高级解决方案架构师 💡 前两篇文章,作者介绍了嵌入式开…...
Matlab论文插图绘制模板第110期—水平双向柱状图
在之前的文章中,分享了很多Matlab柱状图的绘制模板: 进一步,再来看一种特殊的柱状图:水平双向柱状图。 先来看一下成品效果: 特别提示:本期内容『数据代码』已上传资源群中,加群的朋友请自行下…...
【广州华锐互动】VR全景工厂虚拟导览,虚拟现实技术提升企业数字化信息管理水平
随着工业4.0的到来,VR工厂全景制作成为了越来越多工业企业的选择。传统的工厂管理方式往往存在诸多问题,如信息不对称、安全隐患等。为了解决这些问题,VR工厂全景制作应运而生,它通过结合虚拟现实现实技术和数据采集技术ÿ…...
idea 创建mybatis xml文件时找不到
1、File >Settings 如图 : 2、添加模板:如下图 3、添加xml模板 如下图: 模板内容: <?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapperPUBLIC "-//mybatis.org//DTD Mapper 3.0//E…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
