当前位置: 首页 > news >正文

数学建模:回归分析

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:回归分析

文章目录

  • 数学建模:回归分析
  • 回归分析
    • 多元线性回归
      • 案例
    • 多项式回归
      • 一元多项式回归
      • 多元二项式回归
    • 非线性回归
    • 逐步回归

回归分析

在这里插入图片描述

多元线性回归

在这里插入图片描述

在这里插入图片描述


案例

  1. 首先进行回归分析
clc;clear;
x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';
X=[ones(16,1) x];
Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';%% 回归分析
[b,bint,r,rint,states] = regress(Y,X);
  1. p < 0.05 p<0.05 p<0.05 回归模型成立
  2. 建立残差图
rcoplot(r,rint);

在这里插入图片描述


多项式回归

一元多项式回归

在这里插入图片描述


案例

  1. 直接做二次多项式回归
%% 一元多项式回归
clc;clear;x=1/30:1/30:14/30;
y=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
m=2;
%% 回归分析
[p,S] = polyfit(x,y,m);
% p(1)*x^2 + p(2)*x^1 + p(3)%% 绘图
polytool(x,y,m);%% 预测在某位置的值
polyval(p,0.1);%% 预测某位置的值并且返回置信区间
[Y,Delta] = polyconf(p,x,S,0.5);
  1. 化为多元线性回归

x=1/30:1/30:14/30;
y=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
T=[ones(14,1) x' (x.^2)'];
[b,bint,r,rint,stats]=regress(y',T);
b,stats

多元二项式回归

在这里插入图片描述


案例

  1. 直接多元二项式回归
	x1=[1000 600 1200 500 300 400 1300 1100 1300 300];
x2=[5 7 6 6 8 7 5 4 3 9];
y=[100 75 80 70 50 65 90 100 110 60]';
x=[x1' x2'];
rstool(x,y,'purequadratic')
  1. 化为多元线性回归

非线性回归

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

clc;clear;x = 2:16;
y = [2,3,4,5,7,4,3,6,8,9,4,1,0,5,4];
beta0 = [8 2]';
%% 非线性回归分析
[beta,r,J] = nlinfit(x',y','Volum',beta0);%% 预测与绘图
[YY,delta] = nlpredci('Volum',x',beta,r,J);
plot(x,y,'k+',x,YY,'r');------
%% 拟合模型: y = a*e^(b/x)
function y = Volum(beta,x)y = beta(1)*exp(beta(2)./x);
end

逐步回归

在这里插入图片描述


25 回归分析算法基本原理及编程实现.pdf

相关文章:

数学建模:回归分析

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 数学建模&#xff1a;回归分析 文章目录 数学建模&#xff1a;回归分析回归分析多元线性回归案例 多项式回归一元多项式回归多元二项式回归 非线性回归逐步回归 回归分析 多元线性回归 案例 首先进行回归分…...

数据库(一)

数据库 1.为什么要使用数据库 如果要存储数据&#xff0c;我们是可以使用文件来存储数据的&#xff0c;但是使用文件管理数据有很多缺点&#xff0c;比如&#xff1a; 不安全&#xff0c;不利于管理&#xff0c;查询&#xff0c;如果要存储大量的数据&#xff0c;使用文件管理…...

【算法与数据结构】106、LeetCode从中序与后序遍历序列构造二叉树

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;首先我们要知道后序遍历数组的最后一个元素必然是根节点&#xff0c;然后根据根节点在中序遍历数组中的…...

kali 安装cpolar内网穿透实现 ssh 远程连接

文章目录 1. 启动kali ssh 服务2. kali 安装cpolar 内网穿透3. 配置kali ssh公网地址4. 远程连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 简单几步通过cpolar 内网穿透软件实现ssh 远程连接kali! 1. 启动kali ssh 服务 默认新安装的kali系统会关闭ssh 连接服务,我们通…...

算法训练 第一周

一、合并两个有序数组 本题给出了两个整数数组nums1和nums2&#xff0c;这两个数组均是非递减排列&#xff0c;要求我们将这两个数组合并成一个非递减排列的数组。题目中还要求我们把合并完的数组存储在nums1中&#xff0c;并且为了存储两个数组中全部的数据&#xff0c;nums1中…...

软件评测师之码制

目录 一、机器数二、码制三、数的表示范围 一、机器数 机器数就是一个数在计算机中的二进制表示&#xff0c;计算机中机器数的最高位是符号位&#xff0c;正数符号位为0&#xff0c;负数符号位为1&#xff0c;机器数包含原码、反码和补码三种表示形式。 二、码制 表现形式数…...

ubuntu18安装cmake27的方法

背景是ubuntu18默认的cmake是3.10 $ apt search cmake Sorting... Done Full Text Search... Done bear/bionic,bionic 2.3.11-1 allgenerate compilation database for Clang toolingcatkin/bionic,bionic 0.7.8-1 allLow-level build system macros and infrastructure for …...

通讯编程006——NodeJS OPC UA Client开发简单教程

本文介绍如何在NodeJS环境下开发OPC UA Client&#xff0c;通过本文可以对OPC UA的基本概念有所了解&#xff0c;掌握OPC UA的本质。相关软件请登录网信智汇(wangxinzhihui.com)。 开发步骤如下&#xff1a; 1&#xff09;首先需要安装nodejs&#xff0c;要求版本至少是12。 …...

「高等数学」雅可比矩阵和黑塞矩阵的异同

「高等数学」雅可比矩阵和黑塞矩阵的异同 雅可比矩阵&#xff0c;Jacobi matrix 或者 Jacobian&#xff0c;是向量值函数&#xff08; f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:Rn→Rm&#xff09;的一阶偏导数按行排列所得的矩阵。 黑塞矩阵&#xff0c;又叫海森矩…...

继承(个人学习笔记黑马学习)

1、基本语法 #include <iostream> using namespace std; #include <string>//普通实现页面//Java页面 //class Java { //public: // void header() { // cout << "首页、公开课、登录、注册...(公共头部)" << endl; // } // void footer() …...

ToBeWritten之ATTCK 测评方案

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…...

JSONUtil详解

JSONUtil是一个通用的JSON工具类&#xff0c;用于在Java中操作JSON数据。虽然之前提到的示例中没有直接提及JSONUtil&#xff0c;但可以解释一下可能存在的一些常见JSON操作方法&#xff0c;这些方法通常可以在不同的JSON工具类中找到。 JSONUtil中的一些常见方法包括&#xf…...

ArcGIS Maps SDK for JS(一):概述与使用

文章目录 1 概述2 如何使用ArcGIS Maps SDK for JavaScript2.1 AMD 模块与 ES 模块2.2 AMD 模块和 ES 模块比较 3 几种安装方式3.1 通过 ArcGIS CDN 获取 AMD 模块3.2 通过 NPM 运行 ES 模块3.3 通过 CDN 获取 ES 模块3.4 本地构建 ES3.5 本地构建 AMD 3 VSCode下载与安装2.1 下…...

【STM32】FSMC接口的复用和非复用

问题背景 在阅读《零死角玩转STM32—F103指南者》&#xff0c;以及《STM32F10x-中文参考手册》关于FSMC一章节的时候&#xff0c;对于在控制NOR/SRAM的时候使用到的引脚,在提到NOR器件的时候提到了地址复用和非复用接口&#xff0c;一时间没明白是什么东西。 结论 非复用模式…...

操作系统强化认识之Shell编程学习与总结

目录 1.Shell的概述 2.Shell脚本入门 3.变量 3.1.系统预定义变量 3.2.自定义变量 3.3.特殊变量 4.运算符 5.条件判断 6.流程控制 6.1.if判断 6.2.case语句 6.3.for循环 6.4.while循环 7.read读取控制台输入 8.函数 8.1.系统函数 8.2.自定义函数 9.正则表示式入…...

怎么用conda下载清华源的pytorch(自带cuda的版本)

1&#xff0c;添加镜像源 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

【ES6】CommonJS模块和ES6模块

在JavaScript中&#xff0c;模块是一种将功能代码组织成逻辑单元的方式&#xff0c;以便在其他项目中重复使用。有两种主要的模块系统&#xff1a;CommonJS和ES6。 1、CommonJS 在CommonJS中&#xff0c;我们使用require来引入模块&#xff0c;使用module.exports来导出模块。…...

两个线程同步执行:解决乱箭穿心(STL/Windows/Linux)

C自学精简教程 目录(必读) C并发编程入门 目录 多线程同步 线程之间同步是指线程等待其他线程执行完某个动作之后再执行&#xff08;本文情况&#xff09;。 线程同步还可以是像十字路口的红绿灯一样&#xff0c;只允许一个方向的车同行&#xff0c;其他方向的车等待。 本…...

Ubuntu18.04更改镜像源(网易,阿里,清华,中科大,浙大)

一&#xff0c;备份原来的源&#xff08;选做&#xff09; sudo cp /etc/apt/sources.list /etc/apt/sources_init.list 二&#xff0c;更换源 sudo gedit /etc/apt/sources.list 删除原来内容改为新的镜像源 1&#xff0c;清华源 deb https://mirrors.tuna.tsinghua.edu…...

字节码和机器码的区别

字节码和机器码是计算机程序在不同阶段的表示形式&#xff0c;它们的主要区别如下&#xff1a; 抽象级别不同&#xff1a;字节码是一种中间表示形式&#xff0c;位于源代码和机器码之间。它是一种与特定平台无关的低级表示形式&#xff0c;通常由编译器将源代码转换而来。而机器…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑

精益数据分析&#xff08;98/126&#xff09;&#xff1a;电商转化率优化与网站性能的底层逻辑 在电子商务领域&#xff0c;转化率与网站性能是决定商业成败的核心指标。今天&#xff0c;我们将深入解析不同类型电商平台的转化率基准&#xff0c;探讨页面加载速度对用户行为的…...

AT模式下的全局锁冲突如何解决?

一、全局锁冲突解决方案 1. 业务层重试机制&#xff08;推荐方案&#xff09; Service public class OrderService {GlobalTransactionalRetryable(maxAttempts 3, backoff Backoff(delay 100))public void createOrder(OrderDTO order) {// 库存扣减&#xff08;自动加全…...