当前位置: 首页 > news >正文

数学建模:回归分析

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:回归分析

文章目录

  • 数学建模:回归分析
  • 回归分析
    • 多元线性回归
      • 案例
    • 多项式回归
      • 一元多项式回归
      • 多元二项式回归
    • 非线性回归
    • 逐步回归

回归分析

在这里插入图片描述

多元线性回归

在这里插入图片描述

在这里插入图片描述


案例

  1. 首先进行回归分析
clc;clear;
x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';
X=[ones(16,1) x];
Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';%% 回归分析
[b,bint,r,rint,states] = regress(Y,X);
  1. p < 0.05 p<0.05 p<0.05 回归模型成立
  2. 建立残差图
rcoplot(r,rint);

在这里插入图片描述


多项式回归

一元多项式回归

在这里插入图片描述


案例

  1. 直接做二次多项式回归
%% 一元多项式回归
clc;clear;x=1/30:1/30:14/30;
y=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
m=2;
%% 回归分析
[p,S] = polyfit(x,y,m);
% p(1)*x^2 + p(2)*x^1 + p(3)%% 绘图
polytool(x,y,m);%% 预测在某位置的值
polyval(p,0.1);%% 预测某位置的值并且返回置信区间
[Y,Delta] = polyconf(p,x,S,0.5);
  1. 化为多元线性回归

x=1/30:1/30:14/30;
y=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
T=[ones(14,1) x' (x.^2)'];
[b,bint,r,rint,stats]=regress(y',T);
b,stats

多元二项式回归

在这里插入图片描述


案例

  1. 直接多元二项式回归
	x1=[1000 600 1200 500 300 400 1300 1100 1300 300];
x2=[5 7 6 6 8 7 5 4 3 9];
y=[100 75 80 70 50 65 90 100 110 60]';
x=[x1' x2'];
rstool(x,y,'purequadratic')
  1. 化为多元线性回归

非线性回归

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

clc;clear;x = 2:16;
y = [2,3,4,5,7,4,3,6,8,9,4,1,0,5,4];
beta0 = [8 2]';
%% 非线性回归分析
[beta,r,J] = nlinfit(x',y','Volum',beta0);%% 预测与绘图
[YY,delta] = nlpredci('Volum',x',beta,r,J);
plot(x,y,'k+',x,YY,'r');------
%% 拟合模型: y = a*e^(b/x)
function y = Volum(beta,x)y = beta(1)*exp(beta(2)./x);
end

逐步回归

在这里插入图片描述


25 回归分析算法基本原理及编程实现.pdf

相关文章:

数学建模:回归分析

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 数学建模&#xff1a;回归分析 文章目录 数学建模&#xff1a;回归分析回归分析多元线性回归案例 多项式回归一元多项式回归多元二项式回归 非线性回归逐步回归 回归分析 多元线性回归 案例 首先进行回归分…...

数据库(一)

数据库 1.为什么要使用数据库 如果要存储数据&#xff0c;我们是可以使用文件来存储数据的&#xff0c;但是使用文件管理数据有很多缺点&#xff0c;比如&#xff1a; 不安全&#xff0c;不利于管理&#xff0c;查询&#xff0c;如果要存储大量的数据&#xff0c;使用文件管理…...

【算法与数据结构】106、LeetCode从中序与后序遍历序列构造二叉树

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;首先我们要知道后序遍历数组的最后一个元素必然是根节点&#xff0c;然后根据根节点在中序遍历数组中的…...

kali 安装cpolar内网穿透实现 ssh 远程连接

文章目录 1. 启动kali ssh 服务2. kali 安装cpolar 内网穿透3. 配置kali ssh公网地址4. 远程连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 简单几步通过cpolar 内网穿透软件实现ssh 远程连接kali! 1. 启动kali ssh 服务 默认新安装的kali系统会关闭ssh 连接服务,我们通…...

算法训练 第一周

一、合并两个有序数组 本题给出了两个整数数组nums1和nums2&#xff0c;这两个数组均是非递减排列&#xff0c;要求我们将这两个数组合并成一个非递减排列的数组。题目中还要求我们把合并完的数组存储在nums1中&#xff0c;并且为了存储两个数组中全部的数据&#xff0c;nums1中…...

软件评测师之码制

目录 一、机器数二、码制三、数的表示范围 一、机器数 机器数就是一个数在计算机中的二进制表示&#xff0c;计算机中机器数的最高位是符号位&#xff0c;正数符号位为0&#xff0c;负数符号位为1&#xff0c;机器数包含原码、反码和补码三种表示形式。 二、码制 表现形式数…...

ubuntu18安装cmake27的方法

背景是ubuntu18默认的cmake是3.10 $ apt search cmake Sorting... Done Full Text Search... Done bear/bionic,bionic 2.3.11-1 allgenerate compilation database for Clang toolingcatkin/bionic,bionic 0.7.8-1 allLow-level build system macros and infrastructure for …...

通讯编程006——NodeJS OPC UA Client开发简单教程

本文介绍如何在NodeJS环境下开发OPC UA Client&#xff0c;通过本文可以对OPC UA的基本概念有所了解&#xff0c;掌握OPC UA的本质。相关软件请登录网信智汇(wangxinzhihui.com)。 开发步骤如下&#xff1a; 1&#xff09;首先需要安装nodejs&#xff0c;要求版本至少是12。 …...

「高等数学」雅可比矩阵和黑塞矩阵的异同

「高等数学」雅可比矩阵和黑塞矩阵的异同 雅可比矩阵&#xff0c;Jacobi matrix 或者 Jacobian&#xff0c;是向量值函数&#xff08; f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:Rn→Rm&#xff09;的一阶偏导数按行排列所得的矩阵。 黑塞矩阵&#xff0c;又叫海森矩…...

继承(个人学习笔记黑马学习)

1、基本语法 #include <iostream> using namespace std; #include <string>//普通实现页面//Java页面 //class Java { //public: // void header() { // cout << "首页、公开课、登录、注册...(公共头部)" << endl; // } // void footer() …...

ToBeWritten之ATTCK 测评方案

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…...

JSONUtil详解

JSONUtil是一个通用的JSON工具类&#xff0c;用于在Java中操作JSON数据。虽然之前提到的示例中没有直接提及JSONUtil&#xff0c;但可以解释一下可能存在的一些常见JSON操作方法&#xff0c;这些方法通常可以在不同的JSON工具类中找到。 JSONUtil中的一些常见方法包括&#xf…...

ArcGIS Maps SDK for JS(一):概述与使用

文章目录 1 概述2 如何使用ArcGIS Maps SDK for JavaScript2.1 AMD 模块与 ES 模块2.2 AMD 模块和 ES 模块比较 3 几种安装方式3.1 通过 ArcGIS CDN 获取 AMD 模块3.2 通过 NPM 运行 ES 模块3.3 通过 CDN 获取 ES 模块3.4 本地构建 ES3.5 本地构建 AMD 3 VSCode下载与安装2.1 下…...

【STM32】FSMC接口的复用和非复用

问题背景 在阅读《零死角玩转STM32—F103指南者》&#xff0c;以及《STM32F10x-中文参考手册》关于FSMC一章节的时候&#xff0c;对于在控制NOR/SRAM的时候使用到的引脚,在提到NOR器件的时候提到了地址复用和非复用接口&#xff0c;一时间没明白是什么东西。 结论 非复用模式…...

操作系统强化认识之Shell编程学习与总结

目录 1.Shell的概述 2.Shell脚本入门 3.变量 3.1.系统预定义变量 3.2.自定义变量 3.3.特殊变量 4.运算符 5.条件判断 6.流程控制 6.1.if判断 6.2.case语句 6.3.for循环 6.4.while循环 7.read读取控制台输入 8.函数 8.1.系统函数 8.2.自定义函数 9.正则表示式入…...

怎么用conda下载清华源的pytorch(自带cuda的版本)

1&#xff0c;添加镜像源 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

【ES6】CommonJS模块和ES6模块

在JavaScript中&#xff0c;模块是一种将功能代码组织成逻辑单元的方式&#xff0c;以便在其他项目中重复使用。有两种主要的模块系统&#xff1a;CommonJS和ES6。 1、CommonJS 在CommonJS中&#xff0c;我们使用require来引入模块&#xff0c;使用module.exports来导出模块。…...

两个线程同步执行:解决乱箭穿心(STL/Windows/Linux)

C自学精简教程 目录(必读) C并发编程入门 目录 多线程同步 线程之间同步是指线程等待其他线程执行完某个动作之后再执行&#xff08;本文情况&#xff09;。 线程同步还可以是像十字路口的红绿灯一样&#xff0c;只允许一个方向的车同行&#xff0c;其他方向的车等待。 本…...

Ubuntu18.04更改镜像源(网易,阿里,清华,中科大,浙大)

一&#xff0c;备份原来的源&#xff08;选做&#xff09; sudo cp /etc/apt/sources.list /etc/apt/sources_init.list 二&#xff0c;更换源 sudo gedit /etc/apt/sources.list 删除原来内容改为新的镜像源 1&#xff0c;清华源 deb https://mirrors.tuna.tsinghua.edu…...

字节码和机器码的区别

字节码和机器码是计算机程序在不同阶段的表示形式&#xff0c;它们的主要区别如下&#xff1a; 抽象级别不同&#xff1a;字节码是一种中间表示形式&#xff0c;位于源代码和机器码之间。它是一种与特定平台无关的低级表示形式&#xff0c;通常由编译器将源代码转换而来。而机器…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...