快速排序学习
由于之前做有一题看到题解用了快排提升效率,就浅学了一下快速排序,还是似懂非懂。
首先快排的核心有两点,哨兵划分和递归。
- 哨兵划分:以数组中的某个数(一般为首位)为基准数,将数组划分为两个部分,小于基准数的都在左部分,大于基准数的都在右部分。(也就是说此时基准数的位置已经正确了)
- 递归:除了基准数已经处于正确位置,其他两部分还需要继续递归执行哨兵划分,当划分到子数组长度都为 1 了,那就没什么好划分的了,说明此时数组已经排序完了。
- 示例代码如下:
-
// 递归部分// l,r:子数组左右边界public void quickSort(int[] nums, int l, int r){// 说明数组长度被划分到此时为 1 了if(l>=r)return;// i 为基准数坐标,此时 i 左部分都小于 nums[i],右部分大于 nums[i]int i=partition(nums, l, r);// 对左右两部分递归执行哨兵划分quickSort(nums,l,i-1);quickSort(nums,i+1,r);}// 哨兵划分int partition(int[] nums, int l, int r) {int i=l, j=r;while(i<j){// 先从右边往前找比基准数小的,这个 i<j 的作用是:// 首先不会数组越界,其次它保证了不会出现错误的交换// 因为 i 左边的都是划分完的,j 右边的也都是划分完的,不应该再变动while(i < j && nums[j] >= nums[l]) j--;// 再从左边往后找比基准数大的while(i < j && nums[i] <= nums[l]) i++;// 然后把小的换到左边,大的换到右边swap(nums, i, j);}// 因为此时大致为// l i j// 中 小 小 大 大// 所以最后还需要把基准数移到正确的位置swap(nums, i, l);return i;}// 交换 nums[i] 和 nums[j]void swap(int[] nums, int i, int j) {int tmp = nums[i];nums[i] = nums[j];nums[j] = tmp;}
- 时间复杂度的话不难看出,哨兵划分操作是 O(N),递归是递归 logN 轮,所以时间复杂度 O(logN) ,所以总共是 O(N logN)
- 最差情况下,每次哨兵划分都划分出 N-1 长度的数组以及长度 1 的数组,那时间复杂度就为 O(N2) 了
- 空间复杂度的话递归深度最好的情况平均情况下都是 logN,数组完全倒序让你排成正序那深度就为 N 了
算法优化
快排常见优化手段有「Tail Call」和「随机基准数」两种
Tail Call
上面也说了,因为是选取最左边的数为基准数,所以如果数组完全倒序,那么递归深度就会达到 N,也就是说最差空间复杂度为 O(N)
- 每轮递归时,仅对 较短的子数组 执行哨兵划分 partition() ,就可将最差的递归深度控制在 O(logN) (每轮递归的子数组长度都 ≤ 当前数组长度 / 2),即实现最差空间复杂度 O(logN) ,那么只需要修改 quickSort 部分即可
-
void quickSort(int[] nums, int l, int r) {// 子数组长度为 1 时终止递归while (l < r) {// 哨兵划分操作int i = partition(nums, l, r);// 仅递归至较短子数组,控制递归深度if (i - l < r - i) {quickSort(nums, l, i - 1);l = i + 1;} else {quickSort(nums, i + 1, r);r = i - 1;}}}
随机基准数:
由于每次都是取数组首位为基准数,所以当数组完全有序或完全倒序时,partition() 每次都是只划分了一个元素。也就是说当前情况下选择首位为基准数是最差的选择,但是我们仍然每次都坚定选择了最差的选择。
那么使用随机函数 ,每轮在子数组中随机选择一个元素作为基准数,就可以极大概率避免以上劣化情况。
值得注意的是,由于仍然可能出现最差情况(运气真的差到极点,每次都随机到首位,跟不随机一样),因此快速排序的最差时间复杂度仍为 O(N2) 。
代码仅需修改 partition() 方法,其余方法不变,在此省略。这个就很好理解了
-
int partition(int[] nums, int l, int r) {// 在闭区间 [l, r] 随机选取任意索引,并与 nums[l] 交换int ra = (int)(l + Math.random() * (r - l + 1));swap(nums, l, ra);// 以 nums[l] 作为基准数int i = l, j = r;while (i < j) {while (i < j && nums[j] >= nums[l]) j--;while (i < j && nums[i] <= nums[l]) i++;swap(nums, i, j);}swap(nums, i, l);return i;}
- 参考原文
相关文章:
快速排序学习
由于之前做有一题看到题解用了快排提升效率,就浅学了一下快速排序,还是似懂非懂。 首先快排的核心有两点,哨兵划分和递归。 哨兵划分:以数组中的某个数(一般为首位)为基准数,将数组划分为两个部…...

【Vue3 知识第二讲】Vue3新特性、vue-devtools 调试工具、脚手架搭建
文章目录 一、Vue3 新特性1.1 重写双向数据绑定1.1.1 Vue2 基于Object.defineProperty() 实现1.1.2 Vue3 基于Proxy 实现 1.2 优化 虚拟DOM1.3 Fragments1.4 Tree shaking1.5 Composition API 二、 vue-devtools 调试工具三、环境配置四、脚手架目录介绍五、SFC 语法规范解析附…...
pytorch 基于masking对元素进行替换
描述 pytorch 基于masking对元素进行替换. 代码如下. 先展平再赋值. 代码 # map.shape [64,60,128] # infill.shape [64,17,128] # mask_indices.shape [64,60]map map.reshape(map.shape[0] * map.shape[1],map.shape[2]) [mask_indices.reshape(mask_indices.shape[0]*ma…...

Cyber RT学习笔记---7、Component组件认知与实践
7、Component组件认知与实践 前言 本文是对Cyber RT的学习记录,文章可能存在不严谨、不完善、有缺漏的部分,还请大家多多指出。 课程地址: https://apollo.baidu.com/community/course/outline/329?activeId10200 更多还请参考: [1] Apollo星火计划学习笔记——第…...
常见配置文件格式INI/XML/YAML/JSON/Properties/TOML/HCL/YAML Front Matter/.env介绍及实例
1. 常见配置文件INI XML YAML JSON Properties介绍 以下是常见配置文件格式(INI、XML、YAML、JSON、Properties、TOML、HCL、YAML Front Matter、.env)的比较: 配置文件格式简介语法定义优点缺点常见使用场景常见编程语言INI简单的文本文件…...

JS 方法实现复制粘贴
背景 以前我们一涉及到复制粘贴功能,实现思路一般都是: 创建一个 textarea 标签 让这个 textarea 不可见(定位) 给这个 textarea 赋值 把这个 textarea 塞到页面中 调用 textarea 的 select 方法 调用 document.execCommand…...
后端面试话术集锦第 十六 篇:java锁面试话术
这是后端面试集锦第十六篇博文——java锁面试话术❗❗❗ 1. 介绍一下乐观锁和悲观锁 乐观锁的话就是比较乐观,每次去拿数据的时候,认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制或者CAS算法实现。 乐观…...

SystemVerilog 第5章 面向对象编程基础
5.1概述 对结构化编程语言,例如 Verilog和C语言来讲,它们的数据结构和使用这些数据结构的代码之间存在很大的沟壑。数据声明、数据类型与操作这些数据的算法经常放在不同的文件里,因此造成了对程序理解的困难。 Verilog程序员的境遇比C程序员更加棘手,因为Ⅴ erilog语言…...

指针进阶(1)
指针进阶 朋友们,好久不见,这次追秋给大家带来的是内容丰富精彩的指针知识的拓展内容,喜欢的朋友们三连走一波!!! 字符指针 在指针的类型中我们知道有一种指针类型为字符指针 char* ; 使用方法如…...

蝶形运算法
蝶形运算法是一种基于FFT(Fast Fourier Transform)算法的计算方法,其基本思想是将长度为N的DFT分解成若干个长度为N/2的DFT计算,并通过不断的合并操作得到最终的结果。该算法也称为“蝴蝶算法”,因为它的计算过程中需要…...

day 48|● 583. 两个字符串的删除操作 ● 72. 编辑距离
583. 两个字符串的删除操作 dp的含义:指0开头,i- 1和j - 1为结尾的两个序列的删除最小数 递推公式方面: 初始化方面:前面0行和0列的初值要赋好 func minDistance(word1 string, word2 string) int {dp : make([][]int, len(wor…...

服务器(I/O)之多路转接
五种IO模型 1、阻塞等待:在内核将数据准备好之前,系统调用会一直等待。所有的套接字,默认都是阻塞方式。 2、非阻塞等待:如果内核没有将数据准备好,系统调用仍然会返回,并且会返回EWUOLDBLOCK或者EAGAIN错…...
后端面试话术集锦第 十三 篇:java集合面试话术
这是后端面试集锦第十三篇博文——java集合面试话术❗❗❗ 1. Java里常见的数据结构都有哪些以及特征 数组 数组是最常用的数据结构。 数组的特点是长度固定,可以用下标索引,并且所有的元素的类型都是一致的。 列表 列表和数组很相似,只不过它的大小可以改变。 列表一般都是…...

《微服务架构设计模式》第一章
逃离单体地狱 FTGO单体架构 作者用国外FTGO公司(一家做线餐饮外卖)的应用程序举例,阐述了单体架构的优缺点。FTGO应用架构如下: 应用程序是单体应用,具有六边形架构,最内侧是业务逻辑&…...
前端是如何打包的
前端项目的打包过程通常涉及将多个源文件(包括HTML、CSS、JavaScript等)合并、优化和压缩,以生成最终用于生产环境的静态资源。这个过程可以使用构建工具和打包工具来自动化完成。以下是前端项目的常见打包步骤: 1. **源代码编写…...

Qt 5.15编译(MinGW)及集成Crypto++ 8.7.0笔记
一、背景 为使用AES加密库(AES/CBC加解密),选用Crypto 库(官网)。 最新Crypto C库依次为:8.8.0版本(2023-6-25)、8.7.0(2022-8-7)和8.6.0(202…...

Qt 简单闹钟
//wiget.h#ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTime> //时间类 #include <QTimer> //定时器类 #include <QTextToSpeech> #include <QDebug> QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPA…...
简单谈下Spring、Spring MVC和Spring Boot
Spring是一个开源的轻量级框架,用于构建Java应用程序。它提供了一种全面的编程和配置模型,可以帮助开发人员构建各种类型的应用程序,从简单的控制台应用程序到大型企业级应用程序。Spring框架的主要目标是提高应用程序的可维护性、可扩展性和…...

利用python进行视频下载并界面播放快速下载素材
工具:python designer(python自带):UI界面设计工具 VLC:视频播放工具 需要的库如下: import os,platform os.environ[PYTHON_VLC_MODULE_PATH] "./vlc-3.0.14" import vlc from 脚本 import Player from …...

[C++][pcl]pcl安装后测试代码3
测试环境: vs2019 pcl1.12.1 代码: #include<iostream> #include <thread>#include <pcl/common/common_headers.h> #include <pcl/features/normal_3d.h> #include <pcl/io/pcd_io.h> #include <pcl/visualizatio…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...