YOLOV7 添加 CBAM 注意力机制
用于学习记录
文章目录
- 前言
- 一、CBAM
- 1.1 models/common.py
- 1.2 models/yolo.py
- 1.3 yolov7/cfg/training/CBAM.yaml
- 2.4 CBAM 训练结果图
前言
一、CBAM
CBAM: Convolutional Block Attention Module
1.1 models/common.py
class ChannelAttention(nn.Module):def __init__(self, in_planes, ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)self.relu = nn.ReLU()self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))max_out = self.f2(self.relu(self.f1(self.max_pool(x))))out = self.sigmoid(avg_out + max_out)return outclass SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7'padding = 3 if kernel_size == 7 else 1self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)x = torch.cat([avg_out, max_out], dim=1)x = self.conv(x)return self.sigmoid(x)class CBAM(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groupssuper(CBAM, self).__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.Hardswish() if act else nn.Identity()self.ca = ChannelAttention(c2)self.sa = SpatialAttention()def forward(self, x):x = self.act(self.bn(self.conv(x)))x = self.ca(x) * xx = self.sa(x) * xreturn xdef fuseforward(self, x):return self.act(self.conv(x))
1.2 models/yolo.py
搜索 if m in 添加以下代码 CBAM
if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC, SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv, Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, Res, ResCSPA, ResCSPB, ResCSPC, RepRes, RepResCSPA, RepResCSPB, RepResCSPC, ResX, ResXCSPA, ResXCSPB, ResXCSPC, RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC, Ghost, GhostCSPA, GhostCSPB, GhostCSPC,SwinTransformerBlock, STCSPA, STCSPB, STCSPC,SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC, C3, CBAM]:c1, c2 = ch[f], args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [DownC, SPPCSPC, GhostSPPCSPC, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, ResCSPA, ResCSPB, ResCSPC, RepResCSPA, RepResCSPB, RepResCSPC, ResXCSPA, ResXCSPB, ResXCSPC, RepResXCSPA, RepResXCSPB, RepResXCSPC,GhostCSPA, GhostCSPB, GhostCSPC,STCSPA, STCSPB, STCSPC,ST2CSPA, ST2CSPB, ST2CSPC, C3]:args.insert(2, n) # number of repeatsn = 1
1.3 yolov7/cfg/training/CBAM.yaml
# parameters
nc: 60 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32backbone:# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True# [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2 [[-1, 1, CBAM, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2 # [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4 [-1, 1, CBAM, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4 [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7[-1, 1, MP, []], # 8-P3/8[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14[-1, 1, MP, []], # 15-P4/16[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21[-1, 1, MP, []], # 22-P5/32[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28]# yolov7-tiny head
head:[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, SP, [5]],[-2, 1, SP, [9]],[-3, 1, SP, [13]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -7], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 47], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 37], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
2.4 CBAM 训练结果图
相关文章:

YOLOV7 添加 CBAM 注意力机制
用于学习记录 文章目录 前言一、CBAM1.1 models/common.py1.2 models/yolo.py1.3 yolov7/cfg/training/CBAM.yaml2.4 CBAM 训练结果图 前言 一、CBAM CBAM: Convolutional Block Attention Module 1.1 models/common.py class ChannelAttention(nn.Module):def __init__(sel…...

【SpringSecurity】七、SpringSecurity集成thymeleaf
文章目录 1、thymeleaf2、依赖部分3、定义Controller4、创建静态页面5、WebSecurityConfigurerAdapter6、权限相关7、当用户没有某权限时,页面不展示该按钮 1、thymeleaf 查了下读音,leaf/li:f/,叶子,前面的单词发音和时间time一…...

Go语言中的数组、切片和映射解析
目录 数组数组的声明数组循环 切片切片声明切片元素循环 映射Map的声明及初始化Map的遍历 数组 数组存放的是固定长度、相同类型的数据,而且这些存放的元素是连续的。 数组的声明 例如声明一个整形数组: array : [3]int{1, 2, 3}在类型名前加 [] 中括…...

MySql学习笔记03——DQL(数据查询)基本命令
DQL 导入数据 首先使用use database进入数据库中,然后使用命令 source D:\mysql_learning\mysql_learning\document\bjpowernode.sql注意文件名不能有双引号,命令结尾没有分号。 SQL脚本 .sql文件是SQL脚本文件,它里面的内容都是SQL语句…...
操作系统的四大特性
一、并发性 指操作系统同时运行着多个程序,这些程序宏观上是同时运行的,但微观上其实是交替运行的 补充1:并发性区别于并行性 并发是指两个或多个事件在同一时间间隔内发生,事件宏观上是同时进行的,围观上市交替进行的…...

旅游攻略APP外包开发功能
旅游攻略APP是帮助旅行者计划和享受旅行的工具,下面列出了一些常见的旅游攻略APP功能,以及在上线这类应用时需要注意的问题,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 常见…...
Apollo在Java中的使用
本节主要讲解在普通的 Java 项目和 Spring Boot 中如何使用 Apollo。 普通 Java 项目中使用 加入 Apollo Client 的 Maven 依赖,代码如下所示。 <dependency><groupId>com.ctrip.framework.apollo</groupId><artifactId>apollo-client<…...

Elasticsearch 全文搜索引擎 ---- IK分词器
原理:分词的原理:二叉树 首先讲一下为什么要出这个文章,前面我们讲过分词方法:中文分词搜索 pscws(感兴趣的同学可以去爬楼看一下),那为什么要讲IK分词?最主要的原因是&…...

Layer 2盛夏已至,StarkNet如何实现价值跃迁?
作者|Jason Jiang Layer 2概念在2023年夏天迎来爆发。Coinbase、ConsenSys等加密巨头纷纷下场,其部署的原生L2解决方案Base、Linea在过去两个月内相继完成主网上线;被誉为L2 四大天王之一的StarkNet也在夏天顺利完成“量子跃迁”升级&#x…...

KaiwuDB 受邀亮相 2023 中国国际“软博会”
8月31日,第二十五届中国国际软件博览会(以下简称“软博会”)在天津盛大开幕。KaiwuDB 受邀亮相展会,围绕“塑造软件新生态,赋能发展新变革”主题,重点展示自研分布式多模数据库及各大行业解决方案ÿ…...

RS-485/RS-422收发器电路 DP3085 国产低成本替代MAX3085
DP3085是5V、半双工、15kV ESD 保护的 RS-485/RS-422 收发器电路,电路内部包含一路驱动器和一路接收器。 DP3085具有增强的摆率限制,助于降低输出 EMI 以及不匹配的终端连接引起的反射,实现 500kbps 的无误码数据传输。 DP3085芯片接收器输入…...
R-which函数(带有arr.ind参数)
目录 一、which()函数 二、元素位置 一、which()函数 which()函数是R语言中的一个基础函数,用于返回满足指定条件的元素的位置或索引。 语法:which(x, arr.ind FALSE, useNames TRUE) 参数: - x:一个向量、数组或矩阵&#x…...
单片机通用学习-什么是时钟?
什么是时钟? 时钟是同步单片机系统各个部件工作时序的最小时间单位,时钟通过 CPU 控制,产生其他与时钟保持一定关系的同步控制信号,协调各部件的工作时序,没有时钟系统就崩溃了。 如 CPU 与存储器(RAM&am…...

PCL入门(二):初识点云数据
目录 1. 点云数据2. 对点云数据的简单操作3. 结果 1. 点云数据 在pcl里面,定义了很多点云数据类型,比如PointXYZ、PointXYZI、PointXYZRGBA等等,每一个都可以看做是点云的一个点的数据。而整个点云的数据类型被定义为PointCloud。 以pcl::P…...
LeetCode 面试题 03.01. 三合一
文章目录 一、题目二、C# 题解 一、题目 三合一。描述如何只用一个数组来实现三个栈。 你应该实现push(stackNum, value)、pop(stackNum)、isEmpty(stackNum)、peek(stackNum)方法。stackNum表示栈下标,value表示压入的值。 构造函数会传入一个stackSize参数&#x…...

【WebSocketIndexedDB】node+WebSocketIndexedDB开发简易聊天室
序幕介绍: WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 讲人话就是说:WebSocket 使得客户端和服务器之间的数据交换变得更加简单,在 WebSocket API 中,浏览器和服务器只需要完成一次握手&#x…...

【01】弄懂共识机制PoW
基于工作量证明机制的共识机制PoW(Proof of Work) 特点就是多劳多特 共识过程 一个区块链系统中,交易历经多个步骤才能得以上链,并且需要经过多个节点的验证。以下是这些步骤的详细叙述: 交易进入交易池(内…...

QT C++ 基于TCP通信的网络聊天室
一、基本原理及流程 1)知识回顾(C语言中的TCP流程) 2)QT中的服务器端/客户端的操作流程 二、代码实现 1)服务器 .ui .pro 在pro文件中添加network库 .h #ifndef WIDGET_H #define WIDGET_H#include <QWidget>…...

SpringMVC入门详细介绍
一. SpringMVC简介 Spring MVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架,通过把Model,View,Controller分离,将web层进行职责解耦,把复杂的web应用分成逻辑清晰的几部分,简化开发&a…...
R3LIVE源码解析(9) — R3LIVE中r3live_lio.cpp文件
目录 1 r3live_lio.cpp文件简介 2 r3live_lio.cpp源码解析 1 r3live_lio.cpp文件简介 在r3live.cpp文件中创建LIO线程后,R3LIVE中的LIO线程本质上整体流程和FAST-LIO2基本一致。 2 r3live_lio.cpp源码解析 函数最开始会进行一系列的声明和定义,发布的…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...