深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
文章目录
- 第一步:安装anaconda
- 第二步:安装虚拟环境
- 第三步:安装torch和torchvision
- 第四步: 安装mmcv-full
- 第五步: 安装mmdetection
- 第六步:测试环境
- 第七步:训练-目标检测
- 7.1 准备数据集
- 7.2 检查数据集
- 7.3 训练网络
第一步:安装anaconda
参考教程:点击
第二步:安装虚拟环境
conda create --name openmmlab python=3.8
conda activate openmmlab
第三步:安装torch和torchvision
conda install pytorch torchvision torchaudio cpuonly -c pytorch
安装的版本为

第四步: 安装mmcv-full
下载地址:点击
如果是2.*以上的版本,则为mmcv。
pip install mmcv-2.0.1-cp38-cp38-win_amd64.whl
第五步: 安装mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
# "-v" 指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。
到这里为止,环境的配置就完成了。
第六步:测试环境
mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .
下载将需要几秒钟或更长时间,这取决于你的网络环境。完成后,你会在当前文件夹中发现两个文件 rtmdet_tiny_8xb32-300e_coco.py 和 rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth。
如果你通过源码安装的 MMDetection,那么直接运行以下命令进行验证:
python demo/image_demo.py demo/demo.jpg rtmdet_tiny_8xb32-300e_coco.py --weights rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth --device cpu

你会在当前文件夹中的 outputs/vis 文件夹中看到一个新的图像 demo.jpg,图像中包含有网络预测的检测框。

第七步:训练-目标检测
下载目标检测mmyolo:https://github.com/open-mmlab/mmyolo
这个里面的yolo系列更全
7.1 准备数据集
Cat 数据集是由 144 张图片组成的单类数据集(原始图片由 @RangeKing 提供,并由 @PeterH0323 清理),其中包含训练所需的注释信息。示例图像如下所示:
您可以通过以下命令直接下载并使用它:
python tools/misc/download_dataset.py --dataset-name cat --save-dir data/cat --unzip --delete
此数据集使用以下目录结构自动下载到 dir:data/cat

7.2 检查数据集
检查标签是否有问题
修改 tools/analysis_tools/browse_coco_json.py --img-dir ../misc/data/cat/images --ann-file ../misc/data/cat/annotations/annotations_all.json

7.3 训练网络
以 YOLOv5 算法为例,考虑到用户的 GPU 内存有限,我们需要修改一些默认的训练参数,使其流畅运行。需要修改的关键参数如下:
- YOLOv5 是一种基于锚点的算法,不同的数据集需要自适应地计算合适的锚点
- 默认配置使用 8 个 GPU,每个 GPU 的批大小为 16 个。现在将其更改为批处理大小为 12 的单个 GPU。
- 默认训练周期为 300。将其更改为 40 纪元
- 鉴于数据集很小,我们选择使用固定的主干权重
- 原则上,当批量大小发生变化时,学习率应相应地线性缩放,但实际测量发现这不是必需的
在文件夹中创建一个配置文件(我们提供了这个配置供您直接使用),并将以下内容复制到配置文件中。yolov5_s-v61_fast_1xb12-40e_cat.pyconfigs/yolov5
_base_ = 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'data_root = 'misc/data/cat/'
class_name = ('cat', )
num_classes = len(class_name)
metainfo = dict(classes=class_name, palette=[(20, 220, 60)])anchors = [[(68, 69), (154, 91), (143, 162)], # P3/8[(242, 160), (189, 287), (391, 207)], # P4/16[(353, 337), (539, 341), (443, 432)] # P5/32
]max_epochs = 40
train_batch_size_per_gpu = 12
train_num_workers = 4load_from = 'https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth' # noqamodel = dict(backbone=dict(frozen_stages=4),bbox_head=dict(head_module=dict(num_classes=num_classes),prior_generator=dict(base_sizes=anchors)))train_dataloader = dict(batch_size=train_batch_size_per_gpu,num_workers=train_num_workers,dataset=dict(data_root=data_root,metainfo=metainfo,ann_file='annotations/trainval.json',data_prefix=dict(img='images/')))val_dataloader = dict(dataset=dict(metainfo=metainfo,data_root=data_root,ann_file='annotations/test.json',data_prefix=dict(img='images/')))test_dataloader = val_dataloader_base_.optim_wrapper.optimizer.batch_size_per_gpu = train_batch_size_per_gpuval_evaluator = dict(ann_file=data_root + 'annotations/test.json')
test_evaluator = val_evaluatordefault_hooks = dict(checkpoint=dict(interval=10, max_keep_ckpts=2, save_best='auto'),# The warmup_mim_iter parameter is critical.# The default value is 1000 which is not suitable for cat datasets.param_scheduler=dict(max_epochs=max_epochs, warmup_mim_iter=10),logger=dict(type='LoggerHook', interval=5))
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
# visualizer = dict(vis_backends = [dict(type='LocalVisBackend'), dict(type='WandbVisBackend')]) # noqa
然后修改tools/train.py。主要修改config就行了
parser.add_argument('--config', default="../configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py", help='train config file path')
报错需要安装pip install albumentations -i https://pypi.tuna.tsinghua.edu.cn/simple 和pip install prettytable -i https://pypi.tuna.tsinghua.edu.cn/simple
安装完运行后成功训练:

相关文章:
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
文章目录 第一步:安装anaconda第二步:安装虚拟环境第三步:安装torch和torchvision第四步: 安装mmcv-full第五步: 安装mmdetection第六步:测试环境第七步:训练-目标检测7.1 准备数据集7.2 检查数据集7.3 训练网络 第一步…...
Ubuntu18.04安装cuDNN
注册账号 https://developer.nvidia.com/rdp/cudnn-archive 该网站下载安装包需要先进行注册。登录成功后,找到与CUDA对应的版本。 选择Linux版本进行下载。 下载后的格式为.tar.xz 解压 tar xvJf cudnn-linux-x86_64-8.9.3.28_cuda12-archive.tar.xz配置环境 su…...
Java逻辑控制
目录 一、顺序结构 二、分支结构 1、if语句 (1) 语法格式1编辑 (2)语法格式2编辑 (3)语法格式3 2、switch 语句 三、循环结构 1、while循环 2、break 3、continue 4、for 循环 5、do whil…...
easyExcel合并单元格导出
一、导入maven依赖 (很多旧项目自定义了一套Excel导出工具,poi版本可能不兼容,一般poi新旧版本不兼容分界线在3.17,选择3.17版本不会发生代码不兼容情况) <dependency><groupId>com.alibaba</groupId&…...
SpringBoot项目--电脑商城【用户注册】
1.创建数据表 1.1 创建t_user表 CREATE TABLE t_user (uid INT AUTO_INCREMENT COMMENT 用户id,username VARCHAR(20) NOT NULL UNIQUE COMMENT 用户名,password CHAR(32) NOT NULL COMMENT 密码,salt CHAR(36) COMMENT 盐值,phone VARCHAR(20) COMMENT 电话号码,email VARCH…...
HCIP学习-IPv6
目录 前置学习内容 IPv6解决的一些IPv4的缺陷 无限的地址 层次化的地址结构 即插即用 简化报文头部 IPv4和IPv6报头比较 端到端的网络罗完整性 安全性增强 挣钱QoS特性 IPv6地址介绍 格式 首选格式 压缩格式 内嵌IPv4地址格式的IPv6地址格式 IPv6的网络前缀和接…...
golang高精度十进制数扩展包decimal用法
在Go语言中,没有内置的十进制数(decimal)类型或相关的标准库。然而,有一些第三方包可用于处理十进制数,其中比较常用的是decimal包。 decimal包提供了一个big.Float的子类型decimal.Decimal,可以用于表示和…...
STM32F4X RNG随机数发生器
STM32F4X RNG随机数发生器 随机数的作用STM32F4X 随机数发生器RNG控制寄存器RNG状态寄存器RNG数据寄存器RNG数据步骤RNG例程 随机数的作用 随机数顾名思义就是随机产生的数字,这种数字最大的特点就是其不确定性,你不知道它下一次产生的数字是什么。随机…...
5、QT中SQLite数据库的操作
一、QT中的SQLite数据库 1、添加头文件和模块 Header: #include <QSqlDatabase> qmake: QT sql//pro文件添加sql模块执行数据库操作的类: Header: #include <QSqlQuery> qmake: QT sql2、C语言中的SQLite增删减查 SQLite3的基础教程 3、SQLite的…...
git回退到某个提交
git是一个分布式版本控制软件,分布式版本库的做法使源代码的发布和交流都极为方便,因此有不少用户都在使用git。最近小编也正在学习git这款软件,发现要想熟练运用git,学会git中的一些命令是很重要的,如果我们要回滚到某…...
对可再生能源和微电网集成研究的新控制技术和保护算法进行基线和测试及静态、时域和频率分析研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Full authentication is required to access this resource解决办法
我们在使用postman调接口时候,有的时候需要权限才可以访问,否则可能会报下面这个错误 {"success": false,"message": "Full authentication is required to access this resource","code": 401,"result&q…...
Jetty:使用上下文文件部署离线瓦片.md
说明 介绍利用jetty在任意位置如桌面的资源进行发布。比如下载的离线瓦片数据,如果放到jetty的webapps目录下,则启动时间会比较久,可以通过本文的步骤进行配置,也免去了拷贝过程的耗时。 关键字:自定义路径、Jetty、…...
Docker实战:docker compose 搭建Rocketmq
1、配置文件准备 1.1、 新建目录:/home/docker/data/rocketmq/conf mkdir /home/docker/data/rocketmq/conf1.2、 在上面目录下新建文件broker.conf文件,内容如下 brokerClusterName DefaultCluster brokerName broker-a brokerId 0 deleteWhen 0…...
STL常用容器 (C++核心基础教程之STL容器详解)String的API
在C的标准模板库(STL)中,有多种容器可供使用。以下是一些常见的容器类型: 序列容器(Sequential Containers): std::vector:动态数组,支持快速随机访问。 std::list&…...
《人生苦短,我学Python》——条件判断->(if-elif-else)多向选择 条件嵌套
今天,我们来学习多向选择!if--elif--else if 后的语句是当 if 判断条件成立时,执行的操作。elif 后的语句是当 if 判断不成立时,再判断一次,如果成立,执行的操作。else 后的语句是当以上所有判断条件都不成…...
MongoDB 数据库性能优化技巧
原文:MongoDB 数据库性能优化技巧 (techdatafuture.com) MongoDB 是一款灵活且可扩展的NoSQL数据库,为了提高其性能,我们可以采取一些优化技巧。本文将介绍一些MongoDB性能优化的关键点,包括索引的使用、查询优化、数据模型设计和…...
网络安全人才缺口超百万,如今的就业情况怎样?
网络安全人才缺口超百万,如今的就业情况怎样? 2022年9月7日,国家网络安全宣传周准时开始。本次网络安全宣传周和以前一样,主要目的都是为了普及网络安全知识,提高网络安全的防护技能,提升对电信网络诈骗的…...
「MySQL」MySQL面试题全解析:常见问题与高级技巧详解
MySQL面试题全解析:常见问题与高级技巧详解 1. 什么是数据库?2. 什么是MySQL?3. 什么是SQL?4. 什么是主键?5. 什么是外键?6. 请解释索引是什么以及为什么使用索引?7. 什么是事务?8. …...
【USRP】产品型号、参数、架构全解析系列 6:N320 / N321
一、USRP 简介 通用软件无线电外设( USRP ) 是由 Ettus Research 及其母公司National Instruments设计和销售的一系列软件定义无线电。USRP 产品系列由Matt Ettus领导的团队开发,被研究实验室、大学和业余爱好者广泛使用。 大多数 USRP 通过以太网线连接到主机&am…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
