当前位置: 首页 > news >正文

《机器人学一(Robotics(1))》_台大林沛群 第 5 周【机械手臂 轨迹规划】 Quiz 5

我又行了!🤣

求解的 位置 可能会有 变动,根据求得的A填写相应值即可。注意看题目。

coursera链接

文章目录

      • 第1题 Cartesian space
        • 求解 题1-3 的 Python 代码
      • 第2题
      • 第3题
      • 第4题 Joint space
        • 求解 题4-6 的 Python 代码
      • 第5题
      • 第6题
        • 其它可参考代码 Python

笛卡尔空间:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

第1题 Cartesian space

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

求解 题1-3 的 Python 代码

import numpy as np Δt1 = 2 - 0
Δt2 = 4 - 2
Δt3 = 9 - 4T = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[1, Δt1, Δt1**2, Δt1**3, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, Δt2, Δt2**2, Δt2**3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, Δt3, Δt3**2, Δt3**3],[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2*Δt3, 3*Δt3**2],[0, 1, 2*Δt1, 3*Δt1**2, 0, -1, 0, 0, 0, 0, 0, 0],[0, 0, 2, 6*Δt1, 0, 0, -2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 1, 2*Δt2, 3*Δt2**2, 0, -1, 0, 0],[0, 0, 0, 0, 0, 0, 2, 6*Δt2, 0, 0, -2, 0] ]  ## 需要仔细 检查, 很容易 打错def getA(θ):θ = np.array(θ)A = np.dot(np.linalg.inv(T), θ.T)A = np.around(A, decimals = 2)  ## 结果 保留 到 小数点 后 两位return A ## X 的导数 为 速度, 初始和末尾的速度均为0
X = [-4, -5, -5, 2, 2, 2, 0, 0, 0, 0, 0, 0]
print('X_A:')
print(getA(X))## Y 的导数 为 速度, 初始和末尾的速度均为0
Y = [0, 5, 5, 3, 3, -3, 0, 0, 0, 0, 0, 0]
print('\nY_A:')
print(getA(Y))## θ 
θ = [120, 45, 45, 30, 30, 0, 0, 0, 0, 0, 0, 0]
print('\nθ_A:')
print(getA(θ))

矩阵合并版本:

import numpy as np np.set_printoptions(suppress = True)Δt1 = 2 - 0
Δt2 = 4 - 2
Δt3 = 9 - 4T = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[1, Δt1, Δt1**2, Δt1**3, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, Δt2, Δt2**2, Δt2**3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, Δt3, Δt3**2, Δt3**3],[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2*Δt3, 3*Δt3**2],[0, 1, 2*Δt1, 3*Δt1**2, 0, -1, 0, 0, 0, 0, 0, 0],[0, 0, 2, 6*Δt1, 0, 0, -2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 1, 2*Δt2, 3*Δt2**2, 0, -1, 0, 0],[0, 0, 0, 0, 0, 0, 2, 6*Δt2, 0, 0, -2, 0] ]def getA(Θ):   ## 这里  直接使用矩阵 A = np.dot(np.linalg.inv(T), Θ)A = np.around(A, decimals = 2)  ## 结果 保留 到 小数点 后 两位return A Θ = [[-4, 0, 120],[-5, 5, 45],[-5, 5, 45],[2, 3, 30],[2, 3, 30],[2, -3, 0],[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
print('A:')
print(getA(Θ))

在这里插入图片描述

第1题答案: -5//1.44//2.19//-0.58

第2题

在这里插入图片描述

第2题答案: 5//1.67//-2.08//0.37

第3题

在这里插入图片描述
第3题答案: 120//0//-39.18//10.21

第4题 Joint space

在这里插入图片描述

根据这个,需要求解 每个 位姿下的 (θ1,θ2,θ3)
在这里插入图片描述

第4周的PPT:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

求解 题4-6 的 Python 代码

### 已知  (x, y, θ),求解 (θ1, θ2, θ3)
import numpy as np
import math  ##  atan2(y, x, /)### 获取 等号左边的 [θ1, θ2, θ3]   矩阵
l1 = 5
l2 = 3
l3 = 1###  方法一: 通过几何法  求解
def RRR_geometric(x, y, θ):    θ2 = np.arccos((x**2 + y**2 - l1**2 - l2**2)/(2*l1*l2))ψ = np.arccos((l2**2 - x**2 - y**2 - l1**2)/(-2 * l1 * np.sqrt(x**2 + y**2)))   if θ2 < 0:θ1 = math.atan2(y, x) +  ψ   ## np.arctan2(y,x) 也可else:θ1 = math.atan2(y, x) -  ψθ = np.pi * θ / 180  ## 角度 换 弧度θ3 = θ - θ1 - θ2return [θ1, θ2, θ3]### 方法二: 代数解
def RRR_algebraic(x, y, θ):θ2 = np.arccos((x**2 + y**2 - l1**2 - l2**2)/(2*l1*l2))k1 = l1 + l2 * np.cos(θ2)k2 = l2 * np.sin(θ2)θ1 = math.atan2(y, x) - math.atan2(k2, k1)  ## np.arctan2(y,x) 也可θ = np.pi * θ / 180  ## 角度 换 弧度θ3 = θ - θ1 - θ2return [θ1, θ2, θ3]x0, y0, θ0 = -4, 0, 120
x1, y1, θ1 = -5, 5, 45
x2, y2, θ2 = 2, 3, 30
xf, yf, θf = 2, -3, 0##  选择其中一种方法计算 即可
# 法1:几何法   代入
# θ_3col = [RRR_geometric(x0, y0, θ0),
#          RRR_geometric(x1, y1, θ1),RRR_geometric(x1, y1, θ1),
#          RRR_geometric(x2, y2, θ2),RRR_geometric(x2, y2, θ2),
#          RRR_geometric(xf, yf, θf),
#          [0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0]]   ## 注意 返回 结果那样,这里就不用中括号了
## 法2: 解析解   代入
θ_3col = [RRR_algebraic(x0, y0, θ0),RRR_algebraic(x1, y1, θ1),RRR_algebraic(x1, y1, θ1),RRR_algebraic(x2, y2, θ2),RRR_algebraic(x2, y2, θ2),RRR_algebraic(xf, yf, θf),[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0]] 
# print(θ_3col)
#######################################################
####  求解 A
Δt1 = 2 - 0
Δt2 = 4 - 2
Δt3 = 9 - 4T = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[1, Δt1, Δt1**2, Δt1**3, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, Δt2, Δt2**2, Δt2**3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, Δt3, Δt3**2, Δt3**3],[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2*Δt3, 3*Δt3**2],[0, 1, 2*Δt1, 3*Δt1**2, 0, -1, 0, 0, 0, 0, 0, 0],[0, 0, 2, 6*Δt1, 0, 0, -2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 1, 2*Δt2, 3*Δt2**2, 0, -1, 0, 0],[0, 0, 0, 0, 0, 0, 2, 6*Δt2, 0, 0, -2, 0] ]def getA(θ):   ## 这里  直接使用矩阵 A = np.dot(np.linalg.inv(T), θ)A = np.around(A, decimals = 2)  ## 结果 保留 到 小数点 后 两位return A print('θ_A:')
print(getA(θ_3col)) 

在这里插入图片描述
第4题答案: 1.99//-0.6//-0.22//0.05

第5题

在这里插入图片描述

第5题答案: 2.21//0//-0.83//0.27

第6题

在这里插入图片描述
第6题答案: -2.62//0//0.23//-0.07

其它可参考代码 Python

github链接

相关文章:

《机器人学一(Robotics(1))》_台大林沛群 第 5 周【机械手臂 轨迹规划】 Quiz 5

我又行了&#xff01;&#x1f923; 求解的 位置 可能会有 变动&#xff0c;根据求得的A填写相应值即可。注意看题目。 coursera链接 文章目录 第1题 Cartesian space求解 题1-3 的 Python 代码 第2题第3题第4题 Joint space求解 题4-6 的 Python 代码 第5题第6题其它可参考代…...

嵌入式面试/笔试C相关总结

1、存储 单片机端编译后分为code ro rw zi几个区域&#xff0c;其中code是执行文件&#xff0c;ro(read only)只读区域&#xff0c;存放const修饰常量、字符串。rw(read write)存放已初始化变量。zi存放未初始化变量。编译完成后bin大小为coderorw。运行时所需内存为rwzi。 在电…...

支付宝使用OceanBase的历史库实践分享

为解决因业务增长引发的数据库存储空间问题&#xff0c;支付宝基于 OceanBase 数据库启动了历史库项目&#xff0c;通过历史数据归档、过期数据清理、异常数据回滚&#xff0c;实现了总成本降低 80%。 历史数据归档&#xff1a;将在线库&#xff08;SSD 磁盘&#xff09;数据归…...

accelerate 分布式技巧(一)

accelerate分布式技巧 简单使用 Accelerate是一个来自Hugging Face的库&#xff0c;它简化了将单个GPU的PyTorch代码转换为单个或多台机器上的多个GPU的代码。 Accelerate精确地抽象了与多GPU/TPU/fp16相关的模板代码&#xff0c;并保持Pytorch其余代码不变。 import torchim…...

密码找回安全

文章目录 密码找回安全任意秘密重置 密码找回安全 用户提交修改密码请求;账号认证:服务器发送唯一ID (例如信验证码)只有账户所有者才能看的地方&#xff0c;完成身份验证&#xff1b;身份验证:用户提交验证码完成身份验证;修改密码:用户修改密码。 任意秘密重置 登录metinfo4…...

Spring Boot + Vue的网上商城之商品管理

Spring Boot Vue的网上商城之商品管理 在网上商城中&#xff0c;商品管理是一个非常重要的功能。它涉及到商品的添加、编辑、删除和展示等操作。本文将介绍如何使用Spring Boot和Vue来实现一个简单的商品管理系统。 下面是一个实现Spring Boot Vue的网上商城之商品管理的思路…...

B站:提高你的词汇量:如何用英语谈论驾驶

视频链接&#xff1a;提高你的词汇量:如何用英语谈论驾驶_哔哩哔哩_bilibili 英文音标中文hood/hʊd/n. 汽车的引擎盖go over仔细检查&#xff1b;认真讨论&#xff1b;用心思考There are plenty of videos go over this.有很多关于这个的视频unlockvt. 发现&#xff1b;揭开&…...

大前端面试注意要点

前端面试&#xff1a;从IT专家角度全面解析 在数字时代&#xff0c;前端开发工程师的角色变得越来越重要。随着网站和应用程序的复杂性和交互性越来越高&#xff0c;对具有专业技能的前端开发人员的需求也在不断增长。对于正在寻找前端开发职位的开发者&#xff0c;或者正在寻…...

稻盛和夫-如是说(读书笔记)

本书解答的核心问题&#xff1a; “今天&#xff0c;我们需要的不是短期有效的处方。作为人&#xff0c;何谓正确&#xff1f;作为人&#xff0c;应该如何度过人生&#xff1f;这才是一切问题的根源。 有几个要点和认知比较深的地方谈一谈。 1、利他 类似于阳明心学&#xff0…...

Jmeter是用来做什么的?

JMeter是一个开源的Java应用&#xff0c;主要用于性能测试和功能测试。它最初由Apache软件基金会设计用于测试Web应用程序&#xff0c;但现在已经扩展到其他测试功能。JMeter的主要功能如下&#xff1a; 性能测试&#xff1a;性能测试是JMeter的核心功能&#xff0c;主要分为两…...

Docker基础教程

Docker基础教程 Docker简介 Docker基本操作 Docker应用 Docker自定义镜像 Docker compose 为什么使用DockerDocker简介安装DockerDocker的中央仓库Docker镜像操作Docker容器操作准备一个web项目创建MySQL容器创建Tomcat容器将项目部署到TomcatDocker数据卷DockerfileDock…...

Linux命令200例:who用于显示当前登录到系统的用户信息

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌。CSDN专家博主&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0…...

HGDB-修改分区表名称及键值

瀚高数据库 目录 环境 文档用途 详细信息 环境 系统平台&#xff1a;N/A 版本&#xff1a;4.5.7 文档用途 使用存储过程拼接SQL&#xff0c;修改分区名称、分区键值、并重新加入主表&#xff0c;适用于分区表较多场景。 详细信息 说明&#xff1a;本文档为测试过程&#xff1…...

1分钟了解音频、语音数据和自然语言处理的关系

机器学习在日常场景中的应用 音频、语音数据和自然语言处理这三者正在不断促进人工智能技术的发展&#xff0c;人机交互也逐渐渗透进生活的每个角落。在各行各业包括零售业、银行、食品配送服务商&#xff09;的多样互动中&#xff0c;我们都能通过与某种形式的AI&#xff08;…...

线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等

目录 1 什么是正交 1.1 正交相关名词 1.2 正交的定义 1.3 正交向量 1.4 正交基 1.5 正交矩阵的特点 1.6 正交矩阵的用处 1 什么是正交 1.1 正交相关名词 orthogonal set 正交向量组正交变换orthogonal matrix 正交矩阵orthogonal basis 正交基orthogonal decompositio…...

OpenCV之ellipse函数

ellipse函数用来在图片中绘制椭圆、扇形&#xff0c;有两个重载函数。 函数原型1&#xff1a; void cv::ellipse( InputOutputArray img,Point center,Size axes,double angle,double startAngle,double …...

git快速查看某个文件修改的所有commit

1. git blame file git blame 可以显示历史修改的每一行记录,有时候我们只想了解某个文件一共提交几次commit,只显示commit列表,这种方式显然不满足要求。 2.git log常规使用 (1)显示整个project的所有commit (2)显示某个文件的所有commit 这是git log不添加参数的常规…...

加强版python连接飞书通知——本地电脑PC端通过网页链接打开本地已安装软件(调用注册表形式,以漏洞扫描工具AppScan为例)

前言 如果你想要通过超链接来打开本地应用,那么你首先你需要将你的应用添入windows注册表中(这样网页就可以通过指定代号来调用程序),由于安全性的原因所以网页无法直接通过输入绝对路径来调用本地文件。 一、通过创建reg文件自动配置注册表 创建文本文档,使用记事本打开…...

Jmeter进阶使用指南-使用断言

Apache JMeter是一个流行的开源负载和性能测试工具。在JMeter中&#xff0c;断言&#xff08;Assertions&#xff09;是用来验证响应数据是否符合预期的一个重要组件。它是对请求响应的一种检查&#xff0c;如果响应不符合预期&#xff0c;那么断言会标记为失败。 以下是如何在…...

44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例--网上有些说法好像是错误的

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

深度解析云存储:概念、架构与应用实践

在数据爆炸式增长的时代&#xff0c;传统本地存储因容量限制、管理复杂等问题&#xff0c;已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性&#xff0c;成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理&#xff0c;云存储正重塑数据存储与…...

在Spring Boot中集成RabbitMQ的完整指南

前言 在现代微服务架构中&#xff0c;消息队列&#xff08;Message Queue&#xff09;是实现异步通信、解耦系统组件的重要工具。RabbitMQ 是一个流行的消息中间件&#xff0c;支持多种消息协议&#xff0c;具有高可靠性和可扩展性。 本博客将详细介绍如何在 Spring Boot 项目…...