TDengine函数大全-时序库特有函数
以下内容来自 TDengine 官方文档 及
GitHub 内容 。以下所有示例基于 TDengine 3.1.0.3
TDengine函数大全
1.数学函数
2.字符串函数
3.转换函数
4.时间和日期函数
5.聚合函数
6.选择函数
7.时序数据库特有函数
8.系统函数
时序库特有函数
- TDengine函数大全
- CSUM
- DERIVATIVE
- DIFF
- IRATE
- MAVG
- STATECOUNT
- STATEDURATION
- TWA
CSUM
CSUM(expr)
功能说明:累加和(Cumulative sum),输出行与输入行数相同。
返回结果类型: 输入列如果是整数类型返回值为长整型 (int64_t),浮点数返回值为双精度浮点数(Double)。无符号整数类型返回值为无符号长整型(uint64_t)。
适用数据类型:数值类型。
嵌套子查询支持: 适用于内层查询和外层查询。
适用于:表和超级表。
使用说明:
- 不支持 +、-、*、/ 运算,如 csum(col1) + csum(col2)。
- 只能与聚合(Aggregation)函数一起使用。 该函数可以应用在普通表和超级表上。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |> select csum(v1) from t7;csum(v1) |
========================1 |3 |6 |10 |15 |21 |28 |36 |45 |55 |65 |> select ts,csum(v1) from t7;ts | csum(v1) |
==================================================2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 3 |2023-08-01 01:01:03.000 | 6 |2023-08-01 01:01:04.000 | 10 |2023-08-01 01:01:05.000 | 15 |2023-08-01 01:01:06.000 | 21 |2023-08-01 01:01:07.000 | 28 |2023-08-01 01:01:08.000 | 36 |2023-08-01 01:01:09.000 | 45 |2023-08-01 01:01:10.000 | 55 |2023-08-01 01:01:12.000 | 65 |
DERIVATIVE
DERIVATIVE(expr, time_interval, ignore_negative)ignore_negative: {0| 1
}
功能说明:统计表中某列数值的单位变化率。其中单位时间区间的长度可以通过 time_interval 参数指定,最小可以是 1 秒(1s);ignore_negative 参数的值可以是 0 或 1,为 1 时表示忽略负值。
返回数据类型:DOUBLE。
适用数据类型:数值类型。
适用于:表和超级表。
使用说明:
- 可以与选择相关联的列一起使用。 例如: select _rowts, DERIVATIVE() from。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |
Query OK, 14 row(s) in set (0.001077s)taos> select _rowts,derivative(v1,1s,0) from t7;_rowts | derivative(v1,1s,0) |
======================================================2023-08-01 01:01:02.000 | 1.000000000000000 |2023-08-01 01:01:03.000 | 1.000000000000000 |2023-08-01 01:01:04.000 | 1.000000000000000 |2023-08-01 01:01:05.000 | 1.000000000000000 |2023-08-01 01:01:06.000 | 1.000000000000000 |2023-08-01 01:01:07.000 | 1.000000000000000 |2023-08-01 01:01:08.000 | 1.000000000000000 |2023-08-01 01:01:09.000 | 1.000000000000000 |2023-08-01 01:01:10.000 | 1.000000000000000 |2023-08-01 01:01:12.000 | 0.000000000000000 |2023-08-01 01:01:13.000 | -12.000000000000000 |
Query OK, 11 row(s) in set (0.001550s)taos> select _rowts,derivative(v1,1s,1) from t7;_rowts | derivative(v1,1s,1) |
======================================================2023-08-01 01:01:02.000 | 1.000000000000000 |2023-08-01 01:01:03.000 | 1.000000000000000 |2023-08-01 01:01:04.000 | 1.000000000000000 |2023-08-01 01:01:05.000 | 1.000000000000000 |2023-08-01 01:01:06.000 | 1.000000000000000 |2023-08-01 01:01:07.000 | 1.000000000000000 |2023-08-01 01:01:08.000 | 1.000000000000000 |2023-08-01 01:01:09.000 | 1.000000000000000 |2023-08-01 01:01:10.000 | 1.000000000000000 |2023-08-01 01:01:12.000 | 0.000000000000000 |
DIFF
DIFF(expr [, ignore_negative])ignore_negative: {0| 1
}
功能说明:统计表中某列的值与前一行对应值的差。 ignore_negative 取值为 0|1 , 可以不填,默认值为 0. 不忽略负值。ignore_negative 为 1 时表示忽略负数。
返回数据类型:同应用字段。
适用数据类型:数值类型。
适用于:表和超级表。
使用说明:
- 输出结果行数是范围内总行数减一,第一行没有结果输出。
- 可以与选择相关联的列一起使用。 例如: select _rowts, DIFF() from。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select _rowts,diff(v1) from t7;_rowts | diff(v1) |
==================================================1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 1 |2023-08-01 01:01:04.000 | 1 |2023-08-01 01:01:05.000 | 1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 1 |2023-08-01 01:01:09.000 | 1 |2023-08-01 01:01:10.000 | 1 |1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | -12 |> select _rowts,diff(v1,0) from t7;_rowts | diff(v1,0) |
==================================================6426-05-31 11:01:03.576 | NULL |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 1 |2023-08-01 01:01:04.000 | 1 |2023-08-01 01:01:05.000 | 1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 1 |2023-08-01 01:01:09.000 | 1 |2023-08-01 01:01:10.000 | 1 |2023-08-01 01:01:10.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | -12 |> select _rowts,diff(v1,1) from t7;_rowts | diff(v1,1) |
==================================================1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 1 |2023-08-01 01:01:04.000 | 1 |2023-08-01 01:01:05.000 | 1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 1 |2023-08-01 01:01:09.000 | 1 |2023-08-01 01:01:10.000 | 1 |1970-01-01 08:00:00.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | NULL |
IRATE
IRATE(expr)
功能说明:计算瞬时增长率。使用时间区间中最后两个样本数据来计算瞬时增长速率;如果这两个值呈递减关系,那么只取最后一个数用于计算,而不是使用二者差值。
返回数据类型:DOUBLE。
适用数据类型:数值类型。
适用于:表和超级表。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select irate(v1) from t7 where ts>='2023-08-01 01:01:10.000' and ts<='2023-08-01 01:01:12.000';irate(v1) |
============================0.000000000000000 |> select irate(v1) from t7 where ts>='2023-08-01 01:01:01.000' and ts<='2023-08-01 01:01:04.000';irate(v1) |
============================1.000000000000000 |> select _wstart,irate(v1) from t7 interval(2s);_wstart | irate(v1) |
======================================================2023-08-01 01:01:00.000 | 0.000000000000000 |2023-08-01 01:01:02.000 | 1.000000000000000 |2023-08-01 01:01:04.000 | 1.000000000000000 |2023-08-01 01:01:06.000 | 1.000000000000000 |2023-08-01 01:01:08.000 | 1.000000000000000 |2023-08-01 01:01:10.000 | 0.000000000000000 |2023-08-01 01:01:12.000 | -2.000000000000000 |
MAVG
MAVG(expr, k)
功能说明: 计算连续 k 个值的移动平均数(moving average)。如果输入行数小于 k,则无结果输出。参数 k 的合法输入范围是 1≤ k ≤ 1000。
返回结果类型: DOUBLE。
适用数据类型: 数值类型。
嵌套子查询支持: 适用于内层查询和外层查询。
适用于:表和超级表。
使用说明:
- 不支持 +、-、*、/ 运算,如 mavg(col1, k1) + mavg(col2, k1);
- 只能与普通列,选择(Selection)、投影(Projection)函数一起使用,不能与聚合(Aggregation)函数一起使用;
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select ts,mavg(v1,2) from t7;ts | mavg(v1,2) |
======================================================2023-08-01 01:01:02.000 | 1.500000000000000 |2023-08-01 01:01:03.000 | 2.500000000000000 |2023-08-01 01:01:04.000 | 3.500000000000000 |2023-08-01 01:01:05.000 | 4.500000000000000 |2023-08-01 01:01:06.000 | 5.500000000000000 |2023-08-01 01:01:07.000 | 6.500000000000000 |2023-08-01 01:01:08.000 | 7.500000000000000 |2023-08-01 01:01:09.000 | 8.500000000000000 |2023-08-01 01:01:10.000 | 9.500000000000000 |2023-08-01 01:01:12.000 | 10.000000000000000 |2023-08-01 01:01:13.000 | 4.000000000000000 |> select ts,mavg(v1,4) from t7;ts | mavg(v1,4) |
======================================================2023-08-01 01:01:04.000 | 2.500000000000000 |2023-08-01 01:01:05.000 | 3.500000000000000 |2023-08-01 01:01:06.000 | 4.500000000000000 |2023-08-01 01:01:07.000 | 5.500000000000000 |2023-08-01 01:01:08.000 | 6.500000000000000 |2023-08-01 01:01:09.000 | 7.500000000000000 |2023-08-01 01:01:10.000 | 8.500000000000000 |2023-08-01 01:01:12.000 | 9.250000000000000 |2023-08-01 01:01:13.000 | 6.750000000000000 |
STATECOUNT
STATECOUNT(expr, oper, val)
功能说明:返回满足某个条件的连续记录的个数,结果作为新的一列追加在每行后面。条件根据参数计算,如果条件为 true 则加 1,条件为 false 则重置为-1,如果数据为 NULL,跳过该条数据。
参数范围:
- oper : “LT” (小于)、“GT”(大于)、“LE”(小于等于)、“GE”(大于等于)、“NE”(不等于)、“EQ”(等于),不区分大小写。
- val : 数值型
返回结果类型:INTEGER。
适用数据类型:数值类型。
嵌套子查询支持:不支持应用在子查询上。
适用于:表和超级表。
使用说明:
- 不能和窗口操作一起使用,例如 interval/state_window/session_window。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select ts,statecount(v1,'GT',5) from t7;ts | statecount(v1,'GT',5) |
==================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 1 |2023-08-01 01:01:07.000 | 2 |2023-08-01 01:01:08.000 | 3 |2023-08-01 01:01:09.000 | 4 |2023-08-01 01:01:10.000 | 5 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 6 |2023-08-01 01:01:13.000 | -1 |> select ts,statecount(v1,'GT',1) from t7;ts | statecount(v1,'GT',1) |
==================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | 1 |2023-08-01 01:01:03.000 | 2 |2023-08-01 01:01:04.000 | 3 |2023-08-01 01:01:05.000 | 4 |2023-08-01 01:01:06.000 | 5 |2023-08-01 01:01:07.000 | 6 |2023-08-01 01:01:08.000 | 7 |2023-08-01 01:01:09.000 | 8 |2023-08-01 01:01:10.000 | 9 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -1 |
STATEDURATION
STATEDURATION(expr, oper, val, unit)
功能说明:返回满足某个条件的连续记录的时间长度,结果作为新的一列追加在每行后面。条件根据参数计算,如果条件为 true 则加上两个记录之间的时间长度(第一个满足条件的记录时间长度记为 0),条件为 false 则重置为-1,如果数据为 NULL,跳过该条数据。
参数范围:
- oper :
'LT'(小于)、'GT'(大于)、'LE'(小于等于)、'GE'(大于等于)、'NE'(不等于)、'EQ'(等于),不区分大小写,但需要用''包括。 - val : 数值型
- unit : 时间长度的单位,可取值时间单位: 1b(纳秒), 1u(微秒),1a(毫秒),1s(秒),1m(分),1h(小时),1d(天), 1w(周)。如果省略,默认为当前数据库精度。
返回结果类型:INTEGER。
适用数据类型:数值类型。
嵌套子查询支持:不支持应用在子查询上。
适用于:表和超级表。
使用说明:
- 不能和窗口操作一起使用,例如 interval/state_window/session_window。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select ts,stateduration(v1,'GT',5,1a) from t7;ts | stateduration(v1,'GT',5,1a) |
========================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 0 |2023-08-01 01:01:07.000 | 1000 |2023-08-01 01:01:08.000 | 2000 |2023-08-01 01:01:09.000 | 3000 |2023-08-01 01:01:10.000 | 4000 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 6000 |2023-08-01 01:01:13.000 | -1 |> select ts,stateduration(v1,'GT',5,1s) from t7;ts | stateduration(v1,'GT',5,1s) |
========================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 0 |2023-08-01 01:01:07.000 | 1 |2023-08-01 01:01:08.000 | 2 |2023-08-01 01:01:09.000 | 3 |2023-08-01 01:01:10.000 | 4 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 6 |2023-08-01 01:01:13.000 | -1 |> select ts,stateduration(v1,'GT',5,1m) from t7;ts | stateduration(v1,'GT',5,1m) |
========================================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | -1 |2023-08-01 01:01:02.000 | -1 |2023-08-01 01:01:03.000 | -1 |2023-08-01 01:01:04.000 | -1 |2023-08-01 01:01:05.000 | -1 |2023-08-01 01:01:06.000 | 0 |2023-08-01 01:01:07.000 | 0 |2023-08-01 01:01:08.000 | 0 |2023-08-01 01:01:09.000 | 0 |2023-08-01 01:01:10.000 | 0 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 0 |2023-08-01 01:01:13.000 | -1 |
TWA
TWA(expr)
功能说明:时间加权平均函数。统计表中某列在一段时间内的时间加权平均。
返回数据类型:DOUBLE。
适用数据类型:数值类型。
适用于:表和超级表。
示例:
> select ts,v1 from t7;ts | v1 |
========================================2023-08-01 01:01:00.000 | NULL |2023-08-01 01:01:01.000 | 1 |2023-08-01 01:01:02.000 | 2 |2023-08-01 01:01:03.000 | 3 |2023-08-01 01:01:04.000 | 4 |2023-08-01 01:01:05.000 | 5 |2023-08-01 01:01:06.000 | 6 |2023-08-01 01:01:07.000 | 7 |2023-08-01 01:01:08.000 | 8 |2023-08-01 01:01:09.000 | 9 |2023-08-01 01:01:10.000 | 10 |2023-08-01 01:01:11.000 | NULL |2023-08-01 01:01:12.000 | 10 |2023-08-01 01:01:13.000 | -2 |> select _wstart,twa(v1) from t7 interval(1s);_wstart | twa(v1) |
======================================================2023-08-01 01:01:00.000 | 0.000000000000000 |2023-08-01 01:01:01.000 | 1.499500000000000 |2023-08-01 01:01:02.000 | 2.499500000000000 |2023-08-01 01:01:03.000 | 3.499500000000000 |2023-08-01 01:01:04.000 | 4.499499999999999 |2023-08-01 01:01:05.000 | 5.499499999999999 |2023-08-01 01:01:06.000 | 6.499499999999999 |2023-08-01 01:01:07.000 | 7.499499999999999 |2023-08-01 01:01:08.000 | 8.499500000000001 |2023-08-01 01:01:09.000 | 9.499500000000001 |2023-08-01 01:01:10.000 | 5.005000000000000 |2023-08-01 01:01:11.000 | 0.000000000000000 |2023-08-01 01:01:12.000 | 4.006000976562500 |2023-08-01 01:01:13.000 | -2.000000000000000 |> select _wstart,twa(v1) from t7 interval(2s);_wstart | twa(v1) |
======================================================2023-08-01 01:01:00.000 | 1.499500000000000 |2023-08-01 01:01:02.000 | 2.999500000000000 |2023-08-01 01:01:04.000 | 4.999499999999999 |2023-08-01 01:01:06.000 | 6.999499999999999 |2023-08-01 01:01:08.000 | 8.999500000000001 |2023-08-01 01:01:10.000 | 9.995000000000001 |2023-08-01 01:01:12.000 | 3.999999511718750 |
相关文章:
TDengine函数大全-时序库特有函数
以下内容来自 TDengine 官方文档 及 GitHub 内容 。 以下所有示例基于 TDengine 3.1.0.3 TDengine函数大全 1.数学函数 2.字符串函数 3.转换函数 4.时间和日期函数 5.聚合函数 6.选择函数 7.时序数据库特有函数 8.系统函数 时序库特有函数 TDengine函数大全CSUMDERIVATIVEDIFF…...
vue-cli3项目本地启用https,并用mkcert生成证书
在项目根目录下的vue.config.js文件中: // vue.config.js module.exports {devServer: {host:dev.nm.cngc// 此处开启 https,并加载本地证书(否则浏览器左上角会提示不安全)https: {cert: fs.readFileSync(path.join(_dirname,./cert.crt)…...
包装类笔记
包装类 5.1 概述 Java 提供了两个类型系统,基本类型与引用类型,使用基本类型在于效率,然而很多情况,会创建对象使用,因为对象可以做更多的功能,如果想要我们的基本类型像对象一样操作,就可以使…...
TC和TG油封有什么区别?
油封是各种机械系统(包括发动机和工业机械)中的重要部件,因为它们可以防止润滑剂和污染物的泄漏。在可用的不同类型的油封中,常用的是TC和TG密封件。在本文中,我们将讨论TC和TG油封之间的差异,帮助您了解它们的独特特性和应用。 …...
大数据之MapReduce
MapReduce概述 是一个分布式的编程框架,MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。 优点: 易于编程,简单的实现一些接口,就可以完成一…...
《机器人学一(Robotics(1))》_台大林沛群 第 5 周【机械手臂 轨迹规划】 Quiz 5
我又行了!🤣 求解的 位置 可能会有 变动,根据求得的A填写相应值即可。注意看题目。 coursera链接 文章目录 第1题 Cartesian space求解 题1-3 的 Python 代码 第2题第3题第4题 Joint space求解 题4-6 的 Python 代码 第5题第6题其它可参考代…...
嵌入式面试/笔试C相关总结
1、存储 单片机端编译后分为code ro rw zi几个区域,其中code是执行文件,ro(read only)只读区域,存放const修饰常量、字符串。rw(read write)存放已初始化变量。zi存放未初始化变量。编译完成后bin大小为coderorw。运行时所需内存为rwzi。 在电…...
支付宝使用OceanBase的历史库实践分享
为解决因业务增长引发的数据库存储空间问题,支付宝基于 OceanBase 数据库启动了历史库项目,通过历史数据归档、过期数据清理、异常数据回滚,实现了总成本降低 80%。 历史数据归档:将在线库(SSD 磁盘)数据归…...
accelerate 分布式技巧(一)
accelerate分布式技巧 简单使用 Accelerate是一个来自Hugging Face的库,它简化了将单个GPU的PyTorch代码转换为单个或多台机器上的多个GPU的代码。 Accelerate精确地抽象了与多GPU/TPU/fp16相关的模板代码,并保持Pytorch其余代码不变。 import torchim…...
密码找回安全
文章目录 密码找回安全任意秘密重置 密码找回安全 用户提交修改密码请求;账号认证:服务器发送唯一ID (例如信验证码)只有账户所有者才能看的地方,完成身份验证;身份验证:用户提交验证码完成身份验证;修改密码:用户修改密码。 任意秘密重置 登录metinfo4…...
Spring Boot + Vue的网上商城之商品管理
Spring Boot Vue的网上商城之商品管理 在网上商城中,商品管理是一个非常重要的功能。它涉及到商品的添加、编辑、删除和展示等操作。本文将介绍如何使用Spring Boot和Vue来实现一个简单的商品管理系统。 下面是一个实现Spring Boot Vue的网上商城之商品管理的思路…...
B站:提高你的词汇量:如何用英语谈论驾驶
视频链接:提高你的词汇量:如何用英语谈论驾驶_哔哩哔哩_bilibili 英文音标中文hood/hʊd/n. 汽车的引擎盖go over仔细检查;认真讨论;用心思考There are plenty of videos go over this.有很多关于这个的视频unlockvt. 发现;揭开&…...
大前端面试注意要点
前端面试:从IT专家角度全面解析 在数字时代,前端开发工程师的角色变得越来越重要。随着网站和应用程序的复杂性和交互性越来越高,对具有专业技能的前端开发人员的需求也在不断增长。对于正在寻找前端开发职位的开发者,或者正在寻…...
稻盛和夫-如是说(读书笔记)
本书解答的核心问题: “今天,我们需要的不是短期有效的处方。作为人,何谓正确?作为人,应该如何度过人生?这才是一切问题的根源。 有几个要点和认知比较深的地方谈一谈。 1、利他 类似于阳明心学࿰…...
Jmeter是用来做什么的?
JMeter是一个开源的Java应用,主要用于性能测试和功能测试。它最初由Apache软件基金会设计用于测试Web应用程序,但现在已经扩展到其他测试功能。JMeter的主要功能如下: 性能测试:性能测试是JMeter的核心功能,主要分为两…...
Docker基础教程
Docker基础教程 Docker简介 Docker基本操作 Docker应用 Docker自定义镜像 Docker compose 为什么使用DockerDocker简介安装DockerDocker的中央仓库Docker镜像操作Docker容器操作准备一个web项目创建MySQL容器创建Tomcat容器将项目部署到TomcatDocker数据卷DockerfileDock…...
Linux命令200例:who用于显示当前登录到系统的用户信息
🏆作者简介,黑夜开发者,CSDN领军人物,全栈领域优质创作者✌。CSDN专家博主,阿里云社区专家博主,2023年6月csdn上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师࿰…...
HGDB-修改分区表名称及键值
瀚高数据库 目录 环境 文档用途 详细信息 环境 系统平台:N/A 版本:4.5.7 文档用途 使用存储过程拼接SQL,修改分区名称、分区键值、并重新加入主表,适用于分区表较多场景。 详细信息 说明:本文档为测试过程࿱…...
1分钟了解音频、语音数据和自然语言处理的关系
机器学习在日常场景中的应用 音频、语音数据和自然语言处理这三者正在不断促进人工智能技术的发展,人机交互也逐渐渗透进生活的每个角落。在各行各业包括零售业、银行、食品配送服务商)的多样互动中,我们都能通过与某种形式的AI(…...
线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等
目录 1 什么是正交 1.1 正交相关名词 1.2 正交的定义 1.3 正交向量 1.4 正交基 1.5 正交矩阵的特点 1.6 正交矩阵的用处 1 什么是正交 1.1 正交相关名词 orthogonal set 正交向量组正交变换orthogonal matrix 正交矩阵orthogonal basis 正交基orthogonal decompositio…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
