当前位置: 首页 > news >正文

数学建模:模糊综合评价分析

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:模糊综合评价分析

文章目录

  • 数学建模:模糊综合评价分析
  • 综合评价分析
    • 常用评价方法
    • 一级模糊综合评价
      • 综合代码
    • 多级模糊综合评价
    • 总结

综合评价分析

构成综合评价类问题的五个要素:

  1. 被评价对象
  2. 评价指标
  3. 权重系数
  4. 综合评价模型
  5. 评价者

综合评价的一般步骤:

  1. 确定综合评价的目的(分类?排序?实现程度)
  2. 建立评价指标体系
  3. 对指标数据进行预处理:一致化和无量纲化处理
  4. 确定各个指标的权重
  5. 求综合评价值

常用评价方法

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


一级模糊综合评价

  1. 评价对象为 X X X ,其具有评价指标集: U = { u 1 , u 2 , . . . u m } U = \left \{u_1,u_2,...u_m \right \} U={u1,u2,...um}, 具有评价等级集:V = { v 1 , v 2 , . . . v n } \left \{v_1,v_2 , ... v_n \right\} {v1,v2,...vn}
    1. m m m 表示指标(因素) n n n 表示评语的总个数。
  2. 对 U 中每一指标根据评判集中的等级指标进行模糊评判,得到相对偏差模糊矩阵 R R R , 其中 i , j i,j i,j 表示第 i i i 个指标处于 j j j 评语的隶属度是 R i j R_{ij} Rij

R = [ r 11 , r 12 , ⋯ , r 1 n r 21 , r 22 , ⋯ , r 2 n r m 1 , r m 2 , ⋯ , r m n ] R=\begin{bmatrix}r_{11},r_{12},\cdots,r_{1n}\\r_{21},r_{22},\cdots,r_{2n}\\r_{m1},r_{m2},\cdots,r_{mn}\end{bmatrix} R= r11,r12,,r1nr21,r22,,r2nrm1,rm2,,rmn

  1. 自此 { U , V , R } \left \{ U,V,R \right \} {U,V,R} 构成一个模糊综合评价模型,然后确定各指标的权系数向量,记为 : A A A

A = { a 1 , a 2 , ⋯ , a n } A=\{a_{1},a_{2},\cdots,a_{n}\} A={a1,a2,,an}

  1. 利用矩阵的模糊乘法得到综合模糊评价结果,合成评价结果 B B B

运算为模糊乘法,逻辑乘∧(取最小)和逻辑加∨(取最大)

B = A ⋅ R B = A\cdot R B=AR

  1. 归一化(标准化)后,得到:

B = { b 1 , b 2 , ⋯ , b m } B=\{b_{1},b_{2},\cdots,b_{m}\} B={b1,b2,,bm}

  1. 因此便可以根据 B B B 来判断评价结果。

如何得到相对偏差模糊矩阵 R R R

  1. 相对偏差评价法:

    1. 虚拟化理想方案 u u u

      u = ( u 1 , u 2 , ⋯ , u n ) u i = { max ⁡ j { a i j } , a i j 为效益型指标 min ⁡ j { a i j } , a i j 为成本型指标 u{=}(u_1,u_2,\cdots,u_n)\\\\{u_i=\begin{cases}\max_j\left\{a_{ij}\right\},&a_{ij}\text{为效益型指标}\\\min_j\left\{a_{ij}\right\},&a_{ij}\text{为成本型指标}&\end{cases}} u=(u1,u2,,un)ui={maxj{aij},minj{aij},aij为效益型指标aij为成本型指标

    2. 建立相对偏差模糊矩阵 R R R

      R = ( r 11 r 12 ⋯ r 1 n r 21 r 22 ⋯ r 2 n ⋮ ⋮ ⋱ ⋮ r m 1 r m 2 ⋯ r m n ) r i j = ∣ a i j − u i ∣ max ⁡ j { a i j } − min ⁡ j { a i j } \begin{gathered}\text{R} =\left(\begin{array}{cccc}r_{11}&r_{12}&\cdots&r_{1n}\\r_{21}&r_{22}&\cdots&r_{2n}\\\vdots&\vdots&\ddots&\vdots\\\\r_{m1}&r_{m2}&\cdots&r_{mn}\end{array}\right) \\\\\boldsymbol{r_{ij}} =\frac{\left|a_{ij}-u_i\right|}{\max_j\left\{a_{ij}\right\}-\min_j\left\{a_{ij}\right\}} \end{gathered} R= r11r21rm1r12r22rm2r1nr2nrmn rij=maxj{aij}minj{aij}aijui

  2. 相对优属度评价法:

    1. 使用如下公式来计算相对偏差模糊矩阵 R R R

      r i j = { a i j / max ⁡ j { a i j } , a i j 为效益型 min ⁡ j { a i j } / a i j , a i j 为成本型 min ⁡ j ∣ a i j − α j ∣ / a i j − α j ∣ , a i j 为固定型 \begin{aligned}r_{ij}&=\begin{cases}a_{ij}\Big/\max_j\left\{a_{ij}\right\},a_{ij}\text{为效益型}\\\min_j\left\{a_{ij}\right\}\Big/a_{ij},a_{ij}\text{为成本型}\\\min_j\left|a_{ij}-\alpha_j\right|\Big/a_{ij}-\alpha_j\Big|,a_{ij}\text{为固定型}&\end{cases}\end{aligned} rij= aij/maxj{aij},aij为效益型minj{aij}/aij,aij为成本型minjaijαj/aijαj ,aij为固定型


如何得到指标权系数向量 A A A

变异系数法。

数学建模:变异系数法 | HugeYlh

  1. 得到第 i i i 项指标的均值与方差

x i ‾ = 1 n ∑ j = 1 n a i j , s i 2 = 1 n − 1 ∑ j = 1 n ( a i j − x i ‾ ) 2 ν i = s i / ∣ x i ‾ ∣ \overline{x_i}=\frac1n\sum_{j=1}^na_{ij},s_i^2=\frac1{n-1}\sum_{j=1}^n\left(a_{ij}-\overline{x_i}\right)^2 \\\\\boldsymbol{\nu_{i}}=\boldsymbol{s_{i}}/\left|\overline{\boldsymbol{x_{i}}}\right|\boldsymbol{} xi=n1j=1naij,si2=n11j=1n(aijxi)2νi=si/xi

  1. 得到权重值 a i a_i ai

a i = ν i / ∑ ν i a_i=\nu_i/\sum\nu_i ai=νi/νi


熵权法

数学建模:熵权法 | HugeYlh

  1. 计算每一个指标所占全部指标的比例,得到变异值矩阵

p i j = Y y ¨ ∑ i = 1 m Y i j , i = 1 , ⋯ , m , j = 1 , ⋯ , n p_{ij}=\frac{Y_{\ddot{y}}}{\sum_{i=1}^mY_{ij}},i=1,\cdots,m,j=1,\cdots,n pij=i=1mYijYy¨,i=1,,m,j=1,,n

  1. 计算信息熵

    E j = − ln ⁡ ( m ) − 1 ∑ i = 1 m p i j ln ⁡ p i j E_j=-\ln(m)^{-1}\sum_{i=1}^mp_{ij}\ln p_{ij} Ej=ln(m)1i=1mpijlnpij

  2. 获取各个指标的权重


综合代码

  1. 使用相对偏差评价法求得模糊矩阵 R R R
clc;clear;
% 5行 7列 表示5个评价对象,6项指标
X=[1000	120	5000	1	50	1.5	1
700	60	4000	2	40	2	2
900	60	7000	1	70	1	4
800	70	8000	1.5	40	0.5	6
800	80	4000	2	30	2	5];
% 其中第一列与最后一列指标为效益性(越大越好),其他指标为成本型(越小越好)
[m,n]=size(X);%% 计算相对偏差模糊矩阵R
maxA=max(X); 
minA=min(X);
G=maxA-min(X);%最大值减去最小值
A1=max(X(:,1));%A1为效益型
A2=min(X(:,2:n-1));%A2~A6为成本型
A3=max(X(:,7));%A7为效益型
u=[A1,A2,A3]; %得到u然后带入到求 每个r_{ij} 的公式
%% 
R = X;
R = (abs(X-repmat(u,m,1)))./G;%% 利用变异系数计算权向量A
x=mean(X);
s=std(X);
v=s./x;
vsum=sum(v);
A = v./vsum;%% B为m个评价结果
B=R*(A');
  1. 使用相对优属度来求得模糊矩阵 R R R

R i j = a i j m a x j ( a i j ) R_{ij} = \frac {a_{ij}}{max_{j}(a_{ij})} Rij=maxj(aij)aij

%%
clc;clear;close all;
A=[58 38 14 8 57 10
50 45 11 9 52 12
42 47 8 12 50 15
45 42 12 15 46 16
47 44 13 10 49 13];
[m,n]=size(A);
h=max(A);%最大值
H=repmat(h,m,1);
Mij=A./H;% 得到模糊关系矩阵Mij 相对优属度 %% 熵权法
% 得到变异值矩阵
Qij = Mij./repmat(sum(Mij),m,1);% 计算各指标的信息熵
for j=1:n% 计算每个指标的信息熵fj(j)=-1/log(m)*sum(Qij(:,j).*log(Qij(:,j)));
end% 计算各指标权重
v=(1-fj)./sum((1-fj));B=Qij*v';%最终评价结果
disp(B)%显示结果

多级模糊综合评价

评价模型:

C = A B = A ( A 1 R 1 A 2 R 2 ⋯ A n R n ) = A ( B 1 B 2 ⋯ B n ) C=A\text{B}=A\left(\begin{array}{c}A_1R_1\\A_2R_2\\\cdots\\A_nR_n\end{array}\right)=A\left(\begin{array}{c}B_1\\B_2\\\cdots\\B_n\end{array}\right) C=AB=A A1R1A2R2AnRn =A B1B2Bn

即计算出各个二级指标的模糊综合评价的归一化后的评价结果 B B B 后,然后分别进行一级指标的模糊综合评价,并且得到结果: C C C


总结

  1. 灰色关联分析法、相对偏差法和相对优属度法对同一问题的评价、排序结果不尽相同.
  2. 当各指标在评价体系重要性相当时,用变异系数法确定指标权重,可提高上述方法排序的分辨率;
  3. 当各指标在评价体系重要性差异较大时,可考虑用层次分析法确定指标权重;
  4. 在实际中, 对于评价类问题,应同时应用上述几种方法进行综合评价,以提高评价的可靠性。

31 老哥带你学数模:模糊综合评价算法.pdf

相关文章:

数学建模:模糊综合评价分析

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 数学建模:模糊综合评价分析 文章目录 数学建模:模糊综合评价分析综合评价分析常用评价方法一级模糊综合评价综合代码 多级模糊综合评价总结 综合评价分析 构成综合评价类问题的五个…...

智能小车—PWM方式实现小车调速和转向

目录 1. 让小车动起来 2. 串口控制小车方向 3. 如何进行小车PWM调速 4. PWM方式实现小车转向 1. 让小车动起来 电机模块开发 L9110s概述 接通VCC,GND 模块电源指示灯亮, 以下资料来源官方,具体根据实际调试 IA1输入高电平&#xff0c…...

Getx其他高级API

// 给出当前页面的args。 Get.arguments//给出以前的路由名称 Get.previousRoute// 给出要访问的原始路由,例如,rawRoute.isFirst() Get.rawRoute// 允许从GetObserver访问Rounting API。 Get.routing// 检查 snackbar 是否打开 Get.isSnackbarOpen// 检…...

npm/yarn link 测试包时报错 Warning: Invalid hook call. Hooks can only be called ...

使用 dumi 开发 React 组件库时,为避免每次修改都发布到 npm,需要在本地的测试项目中使用 npm link 为组件库建立软连接,方便本地调试。 结果在本地测试项目使用 $ npm link 组件库 后,使用内部组件确报错: react.dev…...

「网页开发|前端开发|Vue」06 公共组件与嵌套路由:让每一个页面都平等地拥有导航栏

本文主要介绍在多个页面存在相同部分时,如何提取公共组件然后在多个页面中导入组件重复使用来减少重复代码。在这基础上介绍了通过嵌套路由的方式来避免页面较多或公共部分较多的情况下,避免不断手动导入公共组件的麻烦,并且加快页面跳转的速…...

leetcode687. 最长同值路径(java)

最长同值路径 题目描述DFS 深度遍历代码演示 题目描述 难度 - 中等 LC - 687. 最长同值路径 给定一个二叉树的 root ,返回 最长的路径的长度 ,这个路径中的 每个节点具有相同值 。 这条路径可以经过也可以不经过根节点。 两个节点之间的路径长度 由它们之…...

MySQL的常用术语

目录 1.关系 2.元组 3.属性 MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 1.关系 前面的博客有说到,MySQL是一款关系型数据库管理软件,一个关系就是 一张二维表(表) 我想大家都知道表格怎么…...

机器学习的特征工程

字典特征提取 def dict_demo():"""字典特征提取:return:"""data [{city: 北京, temperature: 100}, {city: 上海, temperature: 60}, {city: 深圳, temperature: 30}]# data [{city:[北京,上海,深圳]},{temperature:["100","6…...

python3 修改nacos的yaml配置

一、安装nacos库 pip install nacos-sdk-python 二、代码如下 import nacos import yaml# 连接地址 NACOS_SERVER_ADDRESSES "192.168.xx.xx" NACOS_SERVER_PORT 替换为你的端口号,如8848# 命名空间 NACOS_NAMESPACE "your_namespace"# 账…...

YOLOv8 : 数据组织

1. 数据源 首先YOLOv8是支持目标分类、检测和目标分割。当前以应用最为广泛的目标检测为例,简单说明数据相关的信息。 一般情况下,建议将数据划分成images和labels,其中images存储图像,labels存储标签文件(YOLO格式)。如果是VOC数…...

golang如何生成zip压缩文件

在Golang中,您可以使用标准库中的compress/zip包来生成ZIP压缩文件。下面是一个简单的示例代码,演示如何使用该包来创建一个ZIP文件并将文件添加到其中: package main import ( "archive/zip" "bytes" "fmt&qu…...

AntDesign技术指南:构建优雅的前端界面

引言 AntDesign是一款优秀的前端UI组件库,它提供了丰富的组件和功能,帮助我们快速构建漂亮、易用的前端界面。本篇博客将详细介绍AntDesign的使用方法和技巧,并展示完整的代码示例。无论你是初学者还是有经验的开发者,本篇博客都…...

机器人任务挖掘与智能超级自动化技术解析

本文为上海财经大学教授、安徽财经大学学术副校长何贤杰出席“会计科技Acctech应对不确定性挑战”高峰论坛时的演讲内容整理。何贤杰详细介绍了机器人任务挖掘与智能超级自动化技术的发展背景、关键技术和应用场景。 从本质来说,会计是非常适合智能化、自动化的。会…...

C#通过ModbusTcp协议读写西门子PLC中的浮点数

一、Modbus TCP通信概述 MODBUS/TCP是简单的、中立厂商的用于管理和控制自动化设备的MODBUS系列通讯协议的派生产品,显而易见,它覆盖了使用TCP/IP协议的“Intranet”和“Internet”环境中MODBUS报文的用途。协议的最通用用途是为诸如PLC,I/…...

19-springcloud(中)

一 服务注册发现 1 什么是服务治理 为什么需要服务治理 在没有进行服务治理前,服务之间的通信是通过服务间直接相互调用来实现的。 过程: 武当派直接调用峨眉派和华山派,同样,华山派直接调用武当派和峨眉派。如果系统不复杂,这样…...

Leetcode1090. 受标签影响的最大值

思路:根据值从大到小排序,然后在加的时候判断是否达到标签上限即可,一开始想用字典做,但是题目说是集合却连续出现两个8,因此使用元组SortedList进行解决 class Solution:def largestValsFromLabels(self, values: li…...

第七章:敏捷开发工具方法-part2-CI/CD工具介绍

文章目录 前言一、CI-持续集成1.1 安装部署gitlab 二、gitlab CI配置三、jenkins实现CI / CD3.1 安装jenkins3.2 配置CI3.3 配置CD3.4 其他构建方式1、定时构建2、指定参数构建3、webhook自动根据git事件进行构建 前言 什么是CI/Cd? CI-Continuous integration&…...

【自学开发之旅】Flask-回顾--对象拆分-蓝图(二)

url-统一资源定位符-不同的url对应不同的资源 作为服务端&#xff0c;url和视图函数的映射关系就是路由。 定义传递参数的方式&#xff1a; 1.创建动态url app.route("/login2/<username>/<passwd>") def login2(username, passwd):if username "…...

自动驾驶中间件

自动驾驶中间件 1. 什么是中间件2. 中间件的分类3. 自动驾驶为什么需要中间件4. 通信中间件 Reference&#xff1a; 自动驾驶中间件&#xff1a;量产落地的关键技术通俗易懂的告诉你什么是中间件 对于初入自动驾驶行业的人来说&#xff0c;各色各样的新型传感器、线控系统、芯…...

鲲鹏920(ARM64)移植javacpp

JavaCPP JavaCPP 使得Java 应用可以在高效的访问本地C++方法,JavaCPP底层使用了JNI技术,可以广泛的用在Java SE应用中(也包括安卓),以下两个特性是JavaCPP的关键,稍后咱们会用到: 提供一些注解,将Java代码映射为C++代码提供一个jar,用java -jar命令可以将C++代码转为…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...