当前位置: 首页 > news >正文

kafka架构体系

Kafka简介

Kafka是一个由Scala和Java编写的企业级的消息发布和订阅系统,最早是由Linkedin公司开发,最终开源到Apache软件基金会的项目。Kafka是一个分布式的,支持分区的,多副本的和多订阅者的高吞吐量的消息系统,被广泛应用在应用解耦、异步处理、限流削峰和消息驱动等场景。本文将针对Kafka的架构和相关组件进行简单的介绍。在介绍Kafka的架构之前,我们先了解一下Kafk的核心概念。

Kafka核心概念

在详细介绍Kafka的架构和基本组件之前,需要先了解一下Kafka的一些核心概念。
Producer:消息的生产者,负责往Kafka集群中发送消息;
Consumer:消息的消费者,主动从Kafka集群中拉取消息。
Consumer Group:每个Consumer属于一个特定的Consumer Group,新建Consumer的时候需要指定对应的Consumer Group ID。
Broker:Kafka集群中的服务实例,也称之为节点,每个Kafka集群包含一个或者多个Broker(一个Broker就是一个服务器或节点)。
Message:通过Kafka集群进行传递的对象实体,存储需要传送的信息。
Topic:消息的类别,主要用于对消息进行逻辑上的区分,每条发送到Kafka集群的消息都需要有一个指定的Topic,消费者根据Topic对指定的消息进行消费
Partition:消息的分区,Partition是一个物理上的概念,相当于一个文件夹,Kafka会为每个topic的每个分区创建一个文件夹,一个Topic的消息会存储在一个或者多个Partition中
Segment:一个partition当中存在多个segment文件段(分段存储),每个Segment分为两部分,.log文件和 .index 文件,其中 .index 文件是索引文件,主要用于快速查询.log 文件当中数据的偏移量位置
.log文件:存放Message的数据文件,在Kafka中把数据文件就叫做日志文件。一个分区下面默认有n多个.log文件(分段存储)。一个.log文件大默认1G,消息会不断追加在.log文件中,当.log文件的大小超过1G的时候,会自动新建一个新的.log文件。
.index文件:存放.log文件的索引数据,每个.index文件有一个对应同名的.log文件。

后面我们会对上面的一些核心概念进行更深入的介绍。在介绍完Kafka的核心概念之后,我们来看一下Kafka的对外提供的基本功能,组件及架构设计。

Kafka API

如上图所示,Kafka主要包含四个主要的API组件:

  1. Producer API
    应用程序通过Producer API向Kafka集群发送一个或多个Topic的消息。

  2. Consumer API
    应用程序通过Consumer API,向Kafka集群订阅一个或多个Topic的消息,并处理这些Topic下接收到的消息。

  3. Streams API
    应用程序通过使用Streams API充当流处理器(Stream Processor),从一个或者多个Topic获取输入流,并生产一个输出流到一个或者多个Topic,能够有效地将输入流进行转变后变成输出流输出到Kafka集群。

  4. Connect API
    允许应用程序通过Connect API构建和运行可重用的生产者或者消费者,大数据培训能够把kafka主题连接到现有的应用程序或数据系统。Connect实际上就做了两件事情:使用Source Connector从数据源(如:DB)中读取数据写入到Topic中,然后再通过Sink Connector读取Topic中的数据输出到另一端(如:DB),以实现消息数据在外部存储和Kafka集群之间的传输。

Kafka架构

在这里插入图片描述

接下来我们将从Kafka的架构出发,重点介绍Kafka的主要组件及实现原理。Kafka支持消息持久化,消费端是通过主动拉取消息进行消息消费的,订阅状态和订阅关系由客户端负责维护,消息消费完后不会立刻删除,会保留历史消息,一般默认保留7天,因此可以通过在支持多订阅者时,消息无需复制多分,只需要存储一份就可以。下面将详细介绍每个组件的实现原理。

1. Producer

Producer是Kafka中的消息生产者,主要用于生产带有特定Topic的消息,生产者生产的消息通过Topic进行归类,保存在Kafka 集群的Broker上,具体的是保存在指定的partition 的目录下,以Segment的方式(.log文件和.index文件)进行存储。

2. Consumer

Consumer是Kafka中的消费者,主要用于消费指定Topic的消息,Consumer是通过主动拉取的方式从Kafka集群中消费消息,消费者一定属于某一个特定的消费组。

3. Topic

Kafka中的消息是根据Topic进行分类的**,Topic是支持多订阅的,一个Topic可以有多个不同的订阅消息的消费者。Kafka集群Topic的数量没有限制,同一个Topic的数据会被划分在同一个目录下,一个Topic可以包含1至多个分区,所有分区的消息加在一起就是一个Topic的所有消息**。

4. Partition

在Kafka中,为了提升消息的消费速度,可以为每个Topic分配多个Partition,这也是就之前我们说到的,Kafka是支持多分区的。默认情况下,一个Topic的消息只存放在一个分区中。Topic的所有分区的消息合并起来,就是一个Topic下的所有消息。每个分区都有一个从0开始的编号,每个分区内的数据都是有序的,但是不同分区直接的数据是不能保证有序的,大数据培训因为不同的分区需要不同的Consumer去消费,每个Partition只能分配一个Consumer,但是一个Consumer可以同时一个Topic的多个Partition。

Replica机制

Kafka 为分区引入了多副本(Replica)机制,通过增加副本数量可以提升容灾能力。同一分区的不同副本中保存的是相同的消息(在同一时刻,副本之间并非完全一样),副本之间是“一主多从”的关系,其中 leader 副本负责处理读写请求,follower 副本只负责与 leader 副本的消息同步。当 leader 副本出现故障时,从 follower 副本中重新选举新的 leader 副本对外提供服务。
在这里插入图片描述
如上图所示,Kafka 集群中有4个 broker,某个主题中有3个分区,且副本因子(即副本个数)也为3,如此每个分区便有1个 leader 副本和2个 follower 副本。

5. Consumer Group

Kafka中的每一个Consumer都归属于一个特定的Consumer Group,如果不指定,那么所有的Consumer都属于同一个默认的Consumer Group。Consumer Group由一个或多个Consumer组成,同一个Consumer Group中的Consumer对同一条消息只消费一次。每个Consumer Group都有一个唯一的ID,即Group ID,也称之为Group Name。Consumer Group内的所有Consumer协调在一起订阅一个Topic的所有Partition,且每个Partition只能由一个Consuemr Group中的一个Consumer进行消费,但是可以由不同的Consumer Group中的一个Consumer进行消费。如下图所示:
在这里插入图片描述
在层级关系上来说Consumer好比是跟Topic对应的,而Consumer就对应于Topic下的Partition。Consumer Group中的Consumer数量和Topic下的Partition数量共同决定了消息消费的并发量,且Partition数量决定了最终并发量,因为一个Partition只能由一个Consumer进行消费。当一个Consumer Group中Consumer数量超过订阅的Topic下的Partition数量时,Kafka会为每个Partition分配一个Consumer,多出来的Consumer会处于空闲状态。当Consumer Group中Consumer数量少于当前定于的Topic中的Partition数量是,单个Consumer将承担多个Partition的消费工作。如上图所示,Consumer Group B中的每个Consumer需要消费两个Partition中的数据,而Consumer Group C中会多出来一个空闲的Consumer4。总结下来就是:同一个Topic下的Partition数量越多,同一时间可以有越多的Consumer进行消费,消费的速度就会越快,吞吐量就越高。同时,Consumer Group中的Consumer数量需要控制为小于等于Partition数量,且最好是整数倍:如1,2,4等。

6. Segment

考虑到消息消费的性能,Kafka中的消息在每个Partition中是以分段的形式进行存储的,即每1G消息新建一个Segment,每个Segment包含两个文件:.log文件和.index文件。之前我们已经说过,.log文件就是Kafka实际存储Producer生产的消息,而.index文件采用稀疏索引的方式存储.log文件中对应消息的逻辑编号和物理偏移地址(offset),以便于加快数据的查询速度。.log文件和.index文件是一一对应,成对出现的。下图展示了.log文件和.index文件在Partition中的存在方式。
在这里插入图片描述

Kafka里面每一条消息都有自己的逻辑offset(相对偏移量)以及存在物理磁盘上面实际的物理地址便宜量Position,也就是说在Kafka中一条消息有两个位置:offset(相对偏移量)和position(磁盘物理偏移地址)。在kafka的设计中,将消息的offset作为了Segment文件名的一部分。Segment文件命名规则为:Partition全局的第一个Segment从0开始,后续每个segment文件名为上一个Partition的最大offset(Message的offset,非实际物理地偏移地址,实际物理地址需映射到.log中,后面会详细介绍在.log文件中查询消息的原理)。数值最大为64位long大小,由20位数字表示,前置用0填充。
在这里插入图片描述

上图展示了.index文件和.log文件直接的映射关系,通过上图,我们可以简单介绍一下Kafka在Segment中查找Message的过程:
  1.根据需要消费的下一个消息的offset,这里假设是7,使用二分查找在Partition中查找到文件名小于(一定要小于,因为文件名编号等于当前offset的文件里存的都是大于当前offset的消息)当前offset的最大编号的.index文件,这里自然是查找到了00000000000000000000.index。
  2.在.index文件中,使用二分查找,找到offset小于或者等于指定offset(这里假设是7)的最大的offset,这里查到的是6,然后获取到index文件中offset为6指向的Position(物理偏移地址)为258。
  3.在.log文件中,从磁盘位置258开始顺序扫描,直到找到offset为7的Message。
至此,我们就简单介绍完了Segment的基本组件.index文件和.log文件的存储和查询原理。但是我们会发现一个问题:.index文件中的offset并不是按顺序连续存储的,为什么Kafka要将索引文件设计成这种不连续的样子?这种不连续的索引设计方式称之为稀疏索引,Kafka中采用了稀疏索引的方式读取索引,kafka每当.log中写入了4k大小的数据,就往.index里以追加的写入一条索引记录。使用稀疏索引主要有以下原因:
  (1)索引稀疏存储,可以大幅降低.index文件占用存储空间大小。
  (2)稀疏索引文件较小,可以全部读取到内存中,可以避免读取索引的时候进行频繁的IO磁盘操作,以便通过索引快速地定位到.log文件中的Message。

7. Message

Message是实际发送和订阅的信息是实际载体,Producer发送到Kafka集群中的每条消息,都被Kafka包装成了一个Message对象,之后再存储在磁盘中,而不是直接存储的。Message在磁盘中的物理结构如下所示。

On-disk format of a message

offset         : 8 bytes 
message length : 4 bytes (value: 4 + 1 + 1 + 8(if magic value > 0) + 4 + K + 4 + V)
crc            : 4 bytes
magic value    : 1 byte
attributes     : 1 byte
timestamp      : 8 bytes (Only exists when magic value is greater than zero)
key length     : 4 bytes
key            : K bytes
value length   : 4 bytes
value          : V bytes

其中key和value存储的是实际的Message内容,长度不固定,而其他都是对Message内容的统计和描述,长度固定。因此在查找实际Message过程中,磁盘指针会根据Message的offset和message length计算移动位数,以加速Message的查找过程。之所以可以这样加速,因为Kafka的.log文件都是顺序写的,往磁盘上写数据时,就是追加数据,没有随机写的操作。

8.Partition Replicas

最后我们简单聊一下Kafka中的Partition Replicas(分区副本)机制,0.8版本以前的Kafka是没有副本机制的。创建Topic时,可以为Topic指定分区,也可以指定副本个数。kafka 中的分区副本如下图所示:

在这里插入图片描述

Kafka通过副本因子(replication-factor)控制消息副本保存在几个Broker(服务器)上,一般情况下副本数等于Broker的个数,且同一个副本因子不能放在同一个Broker中。副本因子是以分区为单位且区分角色;主副本称之为Leader(任何时刻只有一个),从副本称之为 Follower(可以有多个),处于同步状态的副本叫做in-sync-replicas(ISR)。Leader负责读写数据,Follower不负责对外提供数据读写,只从Leader同步数据,消费者和生产者都是从leader读写数据,不与follower交互,因此Kafka并不是读写分离的。同时使用Leader进行读写的好处是,降低了数据同步带来的数据读取延迟,因为Follower只能从Leader同步完数据之后才能对外提供读取服务。

如果一个分区有三个副本因子,就算其中一个挂掉,那么只会剩下的两个中,选择一个leader,如下图所示。但不会在其他的broker中,另启动一个副本(因为在另一台启动的话,必然存在数据拷贝和传输,会长时间占用网络IO,Kafka是一个高吞吐量的消息系统,这个情况不允许发生)。如果指定分区的所有副本都挂了,Consumer如果发送数据到指定分区的话,将写入不成功。Consumer发送到指定Partition的消息,会首先写入到Leader Partition中,写完后还需要把消息写入到ISR列表里面的其它分区副本中,写完之后这个消息才能提交offset。

在这里插入图片描述
如上图所示,第一条消息的 offset(LogStartOffset)为0,最后一条消息的 offset 为8,offset 为9的消息用虚线框表示,代表下一条待写入的消息。日志文件的 HW 为6,表示消费者只能拉取到 offset 在0至5之间的消息,而 offset 为6的消息对消费者而言是不可见的。

数据同步

分区中的所有副本统称为 AR(Assigned Replicas)。所有与 leader 副本保持一定程度同步的副本(包括 leader 副本在内)组成ISR(In-Sync Replicas),ISR 集合是 AR 集合中的一个子集。

与 leader 副本同步滞后过多的副本(不包括 leader 副本)组成 OSR(Out-of-Sync Replicas),由此可见,AR=ISR+OSR。在正常情况下,所有的 follower 副本都应该与 leader 副本保持一定程度的同步,即 AR=ISR,OSR 集合为空。

Leader 副本负责维护和跟踪 ISR 集合中所有 follower 副本的滞后状态,当 follower 副本落后太多或失效时,leader 副本会把它从 ISR 集合中剔除。默认情况下,当 leader 副本发生故障时,只有在 ISR 集合中的副本才有资格被选举为新的 leader。

HW 是 High Watermark 的缩写,俗称高水位,它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个 offset 之前的消息。
LEO 是 Log End Offset 的缩写,它标识当前日志文件中下一条待写入消息的 offset。

linux 服务下创建分区

去服务器kafka文件夹下创建相应的kafka topic,创建命令如下:bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor ${n} --partitions ${m} --topic ${topic},
其中:
${n}→副本个数,kafka单机情况下为1,集群一般为3;
${m}→分区个数,一般为10;
${topic}→需要创建的topic:(BAYONET_VEHICLEPASS_NOTIFY_JSON_TOPIC、XSINK_PLATE_ALARM_NOTIFY、XSINK_PERSON_NOTIFY_ALARM、ORIGIN_BAYONET_VEHICLEPASS_NOTIFY_JSON_TOPIC)

Kafka Tool 简单使用

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

kafka 客户端发送流程

kafka 高并发实践设计

相关文章:

kafka架构体系

Kafka简介 Kafka是一个由Scala和Java编写的企业级的消息发布和订阅系统,最早是由Linkedin公司开发,最终开源到Apache软件基金会的项目。Kafka是一个分布式的,支持分区的,多副本的和多订阅者的高吞吐量的消息系统,被广…...

【Kafka】三.Kafka怎么保证高可用 学习总结

Kafka 的副本机制 Kafka 的高可用实现主要依赖副本机制。 Broker 和 Partition 的关系 在分析副本机制之前,先来看一下 Broker 和 Partition 之间的关系。Broker 在英文中是代理、经纪人的意思,对应到 Kafka 集群中,是一个 Kafka 服务器节…...

Python学习笔记7:再谈抽象

再谈抽象 对象 多态 即便你不知道变量指向的是哪种对象,也能够对其执行操作封装 向外部隐藏不必要的细节。继承 类 class Person: def set_name(self, name): self.name name def get_name(self): return self.name def greet(self): print("Hello, world…...

钣金行业mes解决方案,缩短产品在制周期

钣金加工行业具有多品种、小批量离散制造行业的典型特点。一些常见的下料车间、备料车间、冲压车间、冲剪生产线等。一般来说,核心业务是钣金加工的生产单位。 一般来说,与大规模生产相比,这种生产方式效率低、成本高,自动化难度…...

【Linux】——git和gdb的简单使用技巧

目录 1.\r&&\n 2.缓冲区 3.做一个Linux的小程序——进度条 1.makefile代码: 2.proc.h代码 3.proc.c代码 4.main.c代码 4.git(上传做好的小程序) 5.Linux调试器-gdb使用 1.\r&&\n 在Linux中,可以将\r看成…...

Fiddler的简单使用

目录 1.断点应用 2.网络限速测试 2.1.为什么需要弱网测试 2.2.Fiddler弱网测试配置 1.断点应用 通过断点功能,可以在测试时方便的篡改request,response以达到测试的目的,如果:在请求头中的参数修改成错误的,或在响应…...

MySql 事务

概述 事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。 注意: 默认MySQL的事务是自动提交的,也就是…...

微信社区小程序/h5/圈子论坛贴吧交友/博客/社交/陌生人社交/宠物/话题/私域/同城交友

内容目录一、详细介绍二、效果展示1.部分代码2.效果图展示三、学习资料下载一、详细介绍 小程序/app/H5多端圈子社区论坛系统,交友/博客/社交/陌生人社交,即时聊天,私域话题,社区论坛圈子,信息引流小程序源码,广场/微校园/微小区/微同城/ 圈子论坛社区系统,含完整…...

Python os和sys模块

一、os模块 os 模块是 Python中的一个内置模块,也是 Python中整理文件和目录最为常用的模块。 该模块提供了非常丰富的方法用来处理文件和目录。比如:显示当前目录下所有文件/删除某个文件/获取文件大小 1、获取当前的工作路径 在 Python 中&#xff0…...

JS中数组如何去重(ES6新增的Set集合类型)+经典two sum面试题

现在有这么一个重复数组:const arr [a,a,b,a,b,c]只推荐简单高效的方法,复杂繁琐的方法不做推荐方法一:const res [...new Set(arr)]Set类型是什么呢?Set 是ES6新增的一种新集合类型。具体知识点可以看下面附录:根据…...

HDLC简介及相应hdlc实训

HDLC简介 HDLC 协议 高级数据链路控制(HDLC,High-level Data Link Control)是一种面向比特的链路层协议, 其最大特点是对任何一种比特流,均可以实现透明的传输。HDLC协议具有以下优点。 透明传输:HDLC不…...

公司技术团队为什么选择使用 YApi 作为 Api 管理平台?

在 2021 年 12 月份的时候我就推荐过一款软件程序员软件推荐:Apifox,当时体验了一下里面的功能确实很实用,但是当时公司有一套自己的 API 管理方案,所有 Apifox 暂时就没在内部使用。 直到最近要使用其他的 API 管理方案的时候才…...

ts知识点整理

1、ts 中的 any 和 unknown 有什么区别? any 和 unknown 都是顶级类型,但是 unknown 更加严格,不像 any 那样不做类型检查,反而 unknown 因为未知性质,不允许访问属性,不允许赋值给其他有明确类型的变量。…...

技术分享 | OceanBase 数据处理之控制文件

作者:杨文 DBA,负责客户项目的需求与维护,会点数据库,不限于MySQL、Redis、Cassandra、GreenPlum、ClickHouse、Elastic、TDSQL等等。 本文来源:原创投稿 *爱可生开源社区出品,原创内容未经授权不得随意使用…...

TCP的三次握手、四次挥手

文章目录前言一、一些重要字段的含义二、TCP总括图三、三次握手详细过程1.第一次握手2.第二次握手3.第三次握手三次握手小结4.为什么必须要进行三次握手,两次或四次就不行四、四次挥手1.第一次挥手2.第二次挥手3.第三次挥手4.第四次挥手四次挥手简述前言 一个TCP的…...

C++---特殊类的设计

文章目录前言一、请设计一个类,不能被拷贝二、请设计一个类,只能在堆上创建对象三、请设计一个类,只能在栈上创建对象四、请设计一个类,不能被继承五、请设计一个类,只能创建一个对象(单例模式)总结前言 正文开始! 一、请设计一个类,不能被拷贝 拷贝只会发生在两个…...

buu [WUSTCTF2020]dp_leaking_1s_very_d@angerous 1

题目描述: e 65537 n 1568083435985787749573756968151889806821667406093028310996964920682463371987925108988184962391663390152073051021014316342831685444929845865667999964711502523821441482572367072472675061656708775063702531276953141639870840764…...

基于SVPWM改进的永磁同步电机直接转矩控制二更

导读:本期对基于SVPWM的永磁同步电机直接转矩控制进行全面的分析和仿真搭建。之后与传统的DTC进行比较,凸显基于SVPWM改进的DTC方法的有效性。如果需要文中的仿真模型,关注微信公众号:浅谈电机控制,留言获取。一、 传统…...

ubuntu下磁盘管理

一. ubuntu 磁盘文件 在做 Linux 嵌入式开发中,一般选择 U 盘的要求是:确保 U 盘是 FAT格式,即选用 FAT32 格式的U盘或 SD 卡。不要用 NTFS 格式的 U 盘或 SD卡,因为Linux 大多数系统都不支持 NTFS格式的,NTFS 格式的…...

Python学习-----排序问题1.0(冒泡排序、选择排序、插入排序)

目录 前言: 1.冒泡排序 2.选择排序 3.插入排序 前言: 学过C语言肯定接触过排序问题,我们最常用的也就是冒泡排序、选择排序、插入排序……等等,同样在Python中也有排序问题,这里我也会讲解Python中冒泡排序、选择排…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...

Windows 下端口占用排查与释放全攻略

Windows 下端口占用排查与释放全攻略​ 在开发和运维过程中,经常会遇到端口被占用的问题(如 8080、3306 等常用端口)。本文将详细介绍如何通过命令行和图形化界面快速定位并释放被占用的端口,帮助你高效解决此类问题。​ 一、准…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...