当前位置: 首页 > news >正文

软考高级系统架构设计师系列案例考点专题三:数据库系统考点梳理及精讲

软考高级系统架构设计师系列案例考点专题三:数据库系统考点梳理及精讲

  • 一、ORM技术
  • 二、数据库分类比较
  • 三、并发控制
  • 四、封锁协议
  • 五、不规范化带来的四大问题
  • 六、反规范化技术
  • 七、分布式数据库
  • 八、数据仓库集成

数据库系统知识在架构设计师的考试里时有考查,主要考查的是数据库的一些新技术的比较,如关系型数据库、内存数据库及NoSQL等,很少涉及到规范化,但也要掌握。

一、ORM技术

  • ORM,即Object-Relational Mapping,它在关系型数据库和对象之间作一个映像,这样,在具体操作数据库的时候,就不需要再去和复杂的SQL语句打交道,只要像平时操作对象一样操作即可。
  • 面向对象编程把所有实体看成对象(object),关系型数据库则是采用实体之间的关系连接数据。很早就有人提出,关系也可以用对象表达,这样,就能使用面向对象编程来操作关系型数据库。

ORM把数据库映像成对象,如:

  • 数据库的表table = 类 class
  • 记录 = 对象
  • 字段 = 对象的属性

ORM的优点:

  • 使用

相关文章:

软考高级系统架构设计师系列案例考点专题三:数据库系统考点梳理及精讲

软考高级系统架构设计师系列案例考点专题三:数据库系统考点梳理及精讲 一、ORM技术二、数据库分类比较三、并发控制四、封锁协议五、不规范化带来的四大问题六、反规范化技术七、分布式数据库八、数据仓库集成数据库系统知识在架构设计师的考试里时有考查,主要考查的是数据库…...

【 XXL-JOB】 XXL-JOB任务分片

文章目录 前言xxl-job 分片广播任务的详细教程创建任务编写任务代码分片参数设置执行任务查看任务执行结果示例1示例2 总结 前言 xxl-job 是一个分布式任务调度平台,支持定时任务和分片任务。其中,分片任务可以将一个大任务拆分成多个小任务&#xff0c…...

RK3568开发笔记-SATA接口调试

目录 前言 一、sata接口介绍 物理连接 数据传输速度...

异步编程 - 09 Spring框架中的异步执行_@Async注解异步执行原理源码解析

文章目录 概述小结好文推荐 概述 在Spring中调用线程将在调用含有Async注释的方法时立即返回,Spring是如何做到的呢?其实是其对标注Async注解的类做了代理,比如下面的类Async-AnnotationExample。 public class AsyncAnnotationExample {As…...

django-项目

一、RESTful设计风格 基础概念 全称:Representational State Transfer 1.资源 网络上的一个实体,每个资源都有一个独一无二的URL与之对应;获取资源-直接访问URL即可 2.表现层 资源的表现形式 如HTML、xml、JPG、json等 3.状态转化 …...

红日靶场五(vulnstack5)渗透分析

环境搭建 win7 192.168.111.132(仅主机) 192.168.123.212(桥接) .\heart p-0p-0p-0win2008 ip: 192.168.111.131(仅主机) sun\admin 2020.comkali ip: 192.168.10.131(nat)vps&…...

掌握Gitflow的一些进阶用法

1、自定义分支命名约定: 默认情况下,GitFlow使用一套分支命名约定,如feature/、release/和hotfix/等前缀。然而,你可以根据项目的需求自定义分支名称。例如,你可以在分支名称中包含项目、功能或团队成员的信息&#x…...

算法随笔:各种经典最短路算法的简要比较总结

有多种最短路径的应用场景,它们需要用到不同的算法来解决。除了贪心最优搜索之外,其他都是最优性算法,即得到的解都是最短路径。其中m是边的数量,n是点的数量。 问题边权算法时间复杂度一个起点,一个终点非负数&#…...

concrt140.dll怎么下载,concrt140.dll修复工具(修复精灵下载)一键修复问题

今天,我将为大家介绍一个非常常见的问题:由于找不到concrt140.dll,无法继续执行代码怎么办。这个问题可能会让很多网友感到头疼,但是别担心,我会为大家提供5种最全详细的恢复方法。在接下来我将详细介绍这些问题及其解决方法。希望…...

自行实现字符串转浮点数函数atof()

【重复造轮子的原因】 尽管atof是标准C中自带的函数,用于将字符串转为浮点数,但是在某些环境下有可能没法使用的(例如CUDA环境中,没有atof函数,但是math.h可以使用),因此自行实现。 【通过的测试用例】 【实现的代码】 #include <stdio.h> #include <math.h…...

Windows平台Fortran编程入门

Fortran&#xff0c;原意为 Formula Translation&#xff08;公式翻译器&#xff09;&#xff1b;一门出现很早的面向科学计算的高级语言&#xff0c;在数值计算领域仍然使用&#xff1b; 免费 Fortran 的编译器包括 GCC 的 GFortran&#xff0c;Intel 的 Intel Fortran Compi…...

05-Mysql夺命三连问:什么是索引下推?什么是索引覆盖?什么是回表?【Java面试总结】

Mysql夺命三连问&#xff1a;什么是索引下推&#xff1f;什么是索引覆盖&#xff1f;什么是回表&#xff1f; 索引下推是mysql5.6 提出的一个查询优化方案&#xff0c;主要的目的是减少数据或查询中不必要的读取和计算&#xff0c;它的原理是将查询条件尽可能的推送到索引层面…...

晨启,MSP430开发板,51开发板,原理图,PCB图

下载&#xff1a;https://github.com/xddun/blog_code_search...

Notepad++ 的安装及配置

由于电脑重装了Win11系统&#xff0c;干脆重头开始&#xff0c;重新安装每一个软件~~~ 很多博客或者博主都会推荐notepad的官网&#xff1a;https://notepad-plus-plus.org/ 但大家亲自点开就会发现是无响应&#xff0c;如下图 同时&#xff0c;也会有很多博主直接给网盘地址…...

✔ ★算法基础笔记(Acwing)(一)—— 基础算法(20道题)【java版本】

基础算法 一、快速排序1. 快速排序例题2. 第k个数( 快速选择 ) ✔ ✔1.31★快排二刷总结( 4点 ) 二、归并排序1. 归并排序模板题 ✔ ✔1.31★二刷总结 ★2. 逆序对的数量 ✔ ✔1.31★二刷总结 三、二分1. 数的范围 ✔1.31★二刷总结(mid > x 则是 输出最左边一个)第一个大于…...

简单记录下gin中使用中间件记录操作日志

1、直接定义中间件package middlewareimport ("bytes""encoding/json""fmt""github.com/gin-gonic/gin""go.uber.org/zap""io""strconv""strings" )func LoggerMiddleWare() gin.HandlerFunc…...

基于Matlab利用IRM和RRTstar实现无人机路径规划(附上源码+数据+说明+报告+PPT)

无人机路径规划是无人机应用领域中的关键问题之一。本文提出了一种基于IRM&#xff08;Informed RRTstar Method&#xff09;和RRTstar&#xff08;Rapidly-exploring Random Tree star&#xff09;算法的无人机路径规划方法&#xff0c;并使用Matlab进行实现。该方法通过结合I…...

uniapp使用@microsoft/signalr(报错“ReferenceError: require is not defined“)

后台老哥要用微软的signalr&#xff0c;总结了一些经验和问题 引入方法 1、npm npm i microsoft/signalr 2、下载他的js或者cdn <script src"https://cdnjs.cloudflare.com/ajax/libs/microsoft-signalr/6.0.1/signalr.js"></script>在uniapp中&…...

CloudCompare 二次开发(9)——半径滤波

目录 一、概述二、代码集成三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 使用CloudCompare与PCL的混合编程实现点云半径滤波。半径滤波的算法原理见:PCL 半径滤波器。基于PCL将半径滤波集成到Cl…...

ElementUI浅尝辄止29:Breadcrumb 面包屑

显示当前页面的路径&#xff0c;快速返回之前的任意页面。 1.如何使用&#xff1f; 在el-breadcrumb中使用el-breadcrumb-item标签表示从首页开始的每一级。Element 提供了一个separator属性&#xff0c;在el-breadcrumb标签中设置它来决定分隔符&#xff0c;它只能是字符串&am…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...