当前位置: 首页 > news >正文

Pytorch深度学习实战3-4:通俗理解张量Tensor的爱因斯坦求和(附实例)

目录

  • 1 爱因斯坦求和由来
  • 2 爱因斯坦求和原理
  • 3 实例:字母表示法
    • 3.1 向量运算
    • 3.2 矩阵运算
    • 3.3 张量运算
  • 4 实例:常量表示法
    • 4.1 向量运算
    • 4.2 矩阵运算
    • 4.3 张量运算

1 爱因斯坦求和由来

爱因斯坦求和约定(Einstein summation convention)是一种标记的约定,又称为爱因斯坦标记法(Einstein notation),在处理关于坐标的方程式时非常有用。这约定是由阿尔伯特·爱因斯坦于1916年提出的。后来,爱因斯坦与友人半开玩笑地说:“这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。”

在这里插入图片描述

采用爱因斯坦求和约定,可以使数学表达式显得简洁明快。

在深度学习中经常涉及高阶张量运算,普通代数方法(如矩阵乘法)相对冗杂,因此引入爱因斯坦求和约定,其核心原理是将张量下标划分为自由标(free index)哑标(dummy index),通过遍历自由标而对哑标逐元相乘求和的方式进行张量运算。

2 爱因斯坦求和原理

爱因斯坦求和原理并不复杂,具体而言,可以用下图来通俗理解,定义:

  • 自由标:在输入输出侧都出现且各出现一次的索引号;
  • 哑标:只在输入侧出现且出现两次的索引号。

输入、输出索引号的个数表示各参与运算张量的维度,例如下图表示两个二维张量做求和运算输出一个二维张量。

在这里插入图片描述

3 实例:字母表示法

3.1 向量运算

# ============================ 一维张量 ================================
a = torch.tensor([1, 2, 3], dtype=float)
b = torch.tensor([4, 5, 6], dtype=float)# 向量内积
print("向量内积:", torch.einsum("i, i ->", a, b))
# 向量点乘
print("向量点乘:",torch.einsum("i, i -> i", a, b))

结果如下:

>>> 向量内积: tensor(32., dtype=torch.float64)
>>> 向量点乘: tensor([ 4., 10., 18.], dtype=torch.float64)

3.2 矩阵运算

# ============================ 二维张量 ================================
c = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=float)
d = torch.ones((3, 4), dtype=float)# 矩阵乘法
print("矩阵乘法:", torch.einsum("ij, jk -> ik", c, d))
# 转置
print("矩阵转置:", torch.einsum("ij -> ji", c))
# 迹
print("迹:", torch.einsum("ii ->", c))
# 对角元
print("对角元:", torch.einsum("ii -> i", c))
# 矩阵按行求和
print("矩阵按行求和:", torch.einsum("ij -> j", c))
# 矩阵按列求和
print("矩阵按列求和:", torch.einsum("ij -> i", c))
# 矩阵所有元素求和
print("矩阵所有元素求和:", torch.einsum("ij ->", c))
# 矩阵乘向量
print("矩阵乘向量:", torch.einsum("ij, j -> i", c, a))

结果如下:

>>> 矩阵乘法: tensor([[ 6.,  6.,  6.,  6.],[15., 15., 15., 15.],[24., 24., 24., 24.]], dtype=torch.float64)   
>>> 矩阵转置: tensor([[1., 4., 7.],[2., 5., 8.],[3., 6., 9.]], dtype=torch.float64)
>>>: tensor(15., dtype=torch.float64)
>>> 对角元: tensor([1., 5., 9.], dtype=torch.float64)
>>> 矩阵按行求和: tensor([12., 15., 18.], dtype=torch.float64)
>>> 矩阵按列求和: tensor([ 6., 15., 24.], dtype=torch.float64)
>>> 矩阵所有元素求和: tensor(45., dtype=torch.float64)
>>> 矩阵乘向量: tensor([14., 32., 50.], dtype=torch.float64)

3.3 张量运算

# ============================ 高阶张量 ================================
e = torch.arange(60.).reshape(5, 3, 4)
f = torch.arange(24.).reshape(2, 4, 3)# 三维张量压缩
print("三维张量压缩:", torch.einsum("kij, lji -> kl", e, f))

结果如下:

>>> 三维张量压缩: tensor([[  440.,  1232.],[ 1232.,  3752.],[ 2024.,  6272.],[ 2816.,  8792.],[ 3608., 11312.]])

4 实例:常量表示法

以下结果同第三节,不再赘述

4.1 向量运算

'''
索引表示法
(张量后接输入索引, 最后是输出索引)
'''
# ============================ 一维张量 ================================
a = np.array([1, 2, 3], dtype=float)
b = np.array([4, 5, 6], dtype=float)# 向量内积
print("向量内积:", np.einsum(a, [0], b, [0]))
# 向量点乘
print("向量点乘:",np.einsum(a, [0], b, [0], [0]))

4.2 矩阵运算

# ============================ 二维张量 ================================
c = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=float)
d = np.ones((3, 4), dtype=float)# 矩阵乘法
print("矩阵乘法:", np.einsum(c, [0, 1], d, [1, 2], [0, 2]))
# 转置
print("矩阵转置:", np.einsum(c, [0, 1], [1, 0]))
# 迹
print("迹:", np.einsum(c, [0, 0]))
# 对角元
print("对角元:", np.einsum(c, [0, 0], [0]))
# 矩阵按行求和
print("矩阵按行求和:", np.einsum(c, [0, 1], [1]))
# 矩阵按列求和
print("矩阵按列求和:", np.einsum(c, [0, 1], [0]))
# 矩阵所有元素求和
print("矩阵所有元素求和:", np.einsum(c, [0, 1]))
# 矩阵乘向量
print("矩阵乘向量:", np.einsum(c, [0, 1], a, [1], [0]))

4.3 张量运算

# ============================ 高阶张量 ================================
e = np.arange(60.).reshape(5, 3, 4)
f = np.arange(24.).reshape(2, 4, 3)# 三维张量压缩
print("三维张量压缩:", np.einsum(e, [2, 0, 1], f, [3, 1, 0], [2, 3]))

🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

相关文章:

Pytorch深度学习实战3-4:通俗理解张量Tensor的爱因斯坦求和(附实例)

目录1 爱因斯坦求和由来2 爱因斯坦求和原理3 实例:字母表示法3.1 向量运算3.2 矩阵运算3.3 张量运算4 实例:常量表示法4.1 向量运算4.2 矩阵运算4.3 张量运算1 爱因斯坦求和由来 爱因斯坦求和约定(Einstein summation convention)是一种标记的约定&#…...

GEE学习笔记 五十六:GEE中如何把文件导出到Google Drive的子目录

今天在群里看到有人在问一个问题,如何使用GEE把文件导出到Google Drive的子目录中?这里我就简单的说一下这个问题。 首先,在GEE中我们都知道了如何将数据导出导出Google Drive的文件夹中,如下面的一个例子: var geome…...

【Go基础】数据库编程

文章目录1. SQL语法简介2. MySQL最佳实践3. Go SQL驱动接口解读4. 数据库增删改查5. stmt6. SQLBuilder6.1 Go-SQLBuilder6.2 Gendry6.3 自行实现SQLBuilder7. GORM8. Go操作MongoDB1. SQL语法简介 SQL(Structured Query Language)是一套语法标准&#…...

【颠覆软件开发】华为自研IDE!未来IDE将不可预测!

IDE是软件开发生态的入口,但目前我们所使用的IDE基本都是由国外巨头提供,比如Visual Studio、Eclipse、JetBrains。这些IDE具有很高的断供风险,与操作系统、芯片、编程语言一样,非常重要。 随着越来越多的软件开始采用云上开发模…...

怎样从零基础学黑客

可以说想学黑客技术,要求你首先是一个“T”字型人才,也就是说电脑的所有领域你都能做的来,而且有一项是精通的。因此作为一个零基础的黑客爱好者来说,没有良好的基础是绝对不行的,下面我就针对想真正学习黑客的零基础朋…...

burp小程序抓包

身为一名码农,抓包肯定是一项必备技能。工作中遇到很多次需要对小程序进行抓包排查问题。下面分享一下我的抓包方式,使用的是电脑版小程序抓包,跟手机的方式都差不多的。 一、环境 微信版本:3.6.0.18 Burpsuite版本&#xff1a…...

文件上传攻击骚操作

允许直接上传shell 只要有文件上传功能,那么就可以尝试上传webshell直接执行恶意代码,获得服务器权限,这是最简单也是最直接的利用。 允许上传压缩包 如果可以上传压缩包,并且服务端会对压缩包解压,那么就可能存在Zip …...

Scala流程控制(第四章:分支控制、嵌套分支、switch分支、for循环控制全、while与do~while、多重与中断)

文章目录第 4 章 流程控制4.1 分支控制 if-else4.1.1 单分支4.1.2 双分支4.1.3 多分支4.2 嵌套分支4.3 Switch 分支结构4.4 For 循环控制4.4.1 范围数据循环(To)4.4.2 范围数据循环(Until)4.4.3 循环守卫4.4.4 循环步长4.4.5 嵌套…...

华为OD机试真题Python实现【整理扑克牌】真题+解题思路+代码(20222023)

整理扑克牌 题目 给定一组数字,表示扑克牌的牌面数字,忽略扑克牌的花色,请安如下规则对这一组扑克牌进行整理。 步骤一: 对扑克牌进行分组,规则如下 当牌面数字相同张数大于等于4时,组合牌为炸弹;三张相同牌面数字+两张相同牌面数字,且三张牌与两张牌不相同时,组合牌…...

【春秋云境】CVE-2022-28525

靶标介绍: ​ ED01-CMS v20180505 存在任意文件上传漏洞 打开靶场: 盲猜一波弱密码admin:admin就进去了。登录后在图中位置点击进行图片更新,需要将密码等都写上 抓包将图片信息进行替换,并修改文件名: POST /admin…...

Android设置取消系统闹钟

系统闹钟包名&#xff1a;com.android.deskclock 调用系统闹钟&#xff0c;首先在清单文件AndroidManifest.xml中添加权限&#xff1a; <uses-permission android:name"com.android.alarm.permission.SET_ALARM" />设置系统闹钟&#xff1a; public static v…...

使用 Node.js 多进程提高任务执行效率

什么是 Node 多进程&#xff1f; Node 是在单个线程中运行&#xff0c;我们虽然没办法开启额外的线程&#xff0c;但是可以开启进程集群。这样可以让下载任务和上传任务同时进行。 使用多进程进行初步代码优化 const dl require(./download.js) const ul require(./upload…...

[Golang实战]github.io部署个人博客hugo[新手开箱可用][小白教程]

[Golang实战]github.io部署个人博客hugo[新手开箱可用][小白教程]1.新手教程(小白也能学会)2.开始准备2.1myBlog是hugo的项目1.安装Hugo2.创建hugo项目2.2 xxxx.github.io是github.io中规定的pages项目3.成功部署4.TODO自动化workflows部署github.io1.新手教程(小白也能学会) …...

50个 Pandas 高频操作技巧,建议收藏

在数据分析和数据建模的过程中需要对数据进行清洗和整理等工作&#xff0c;有时需要对数据增删字段。 下面为大家介绍Pandas对数据的复杂查询、数据类型转换、数据排序、数据的修改、数据迭代以及函数的使用 文章目录技术交流01、复杂查询1、逻辑运算2、逻辑筛选数据3、函数筛…...

pygraphviz安装教程

0x01. 背景 最近在做casual inference&#xff0c;做实验时候想因果图可视化&#xff0c;遂需要安装pygraphviz&#xff0c;整了一下午&#xff0c;终于捣鼓好了&#xff0c;真头大。 环境&#xff1a; win10操作系统python3.9环境 0x02. 安装Graphviz 传送门&#xff1a;…...

HarmonyOS Connect认证测试

在HarmonyOS Connect生态产品的认证测试过程中&#xff0c;你是否存在这些疑问&#xff1a;认证流程具体包括哪些操作环节&#xff1f;如何根据实际场景选择合适的认证方式&#xff1f;如何选择认证测试标准的版本…… 本期FAQ为大家带来HarmonyOS Connect认证测试的常见问题…...

Datawhale团队第九期录取名单!

Datawhale团队 公示&#xff1a;Datawhale团队成员Datawhale成立四年了&#xff0c;从一开始的12个人&#xff0c;学习互助&#xff0c;到提议成立开源组织&#xff0c;做更多开源的事情&#xff0c;帮助更多学习者&#xff0c;也促使我们更好地成长。于是有了我们的使命&#…...

ChatGPT 的原理与未来研究方向

1、原理&#xff1a; 架构&#xff1a;chatGPT是一种基于转移学习的大型语言模型&#xff0c;它使用GPT-3.2 &#xff08;Generative PretrainedTransformer2&#xff09;模型的技术&#xff0c;使用了transformer的架构&#xff0c;并进行了进一步的训练和优化。InstructGPT/…...

基于UIAutomation+Python+Unittest+Beautifulreport的WindowsGUI自动化测试框架主入口main解析

文章目录1 main.py主入口2 testcase目录2.1 实例&#xff1a;test\_test\_mymusic.py2.2 实例&#xff1a;test\_toolbar.py3 page目录3.1 page/mymusic.py3.2 page/toolbar.py注&#xff1a; 1、本文为本站首发&#xff0c;他用请联系作者并注明出处&#xff0c;谢谢&#xff…...

华为OD机试真题Python实现【挑选字符串】真题+解题思路+代码(20222023)

挑选字符串 题目 给定a-z,26 个英文字母小写字符串组成的字符串A和B, 其中A可能存在重复字母,B不会存在重复字母, 现从字符串A中按规则挑选一些字母可以组成字符串B 挑选规则如下: 同一个位置的字母只能挑选一次, 被挑选字母的相对先后顺序不能被改变, 求最多可以同时…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

C++中vector类型的介绍和使用

文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…...

java+webstock

maven依赖 <dependency><groupId>org.java-websocket</groupId><artifactId>Java-WebSocket</artifactId><version>1.3.5</version></dependency><dependency><groupId>org.apache.tomcat.websocket</groupId&…...

iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)

崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题&#xff0c;不一定会立刻崩&#xff0c;但一旦积累&#xff0c;就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能&#xff0c;而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...