Pytorch深度学习实战3-4:通俗理解张量Tensor的爱因斯坦求和(附实例)
目录
- 1 爱因斯坦求和由来
- 2 爱因斯坦求和原理
- 3 实例:字母表示法
- 3.1 向量运算
- 3.2 矩阵运算
- 3.3 张量运算
- 4 实例:常量表示法
- 4.1 向量运算
- 4.2 矩阵运算
- 4.3 张量运算
1 爱因斯坦求和由来
爱因斯坦求和约定(Einstein summation convention)是一种标记的约定,又称为爱因斯坦标记法(Einstein notation),在处理关于坐标的方程式时非常有用。这约定是由阿尔伯特·爱因斯坦于1916年提出的。后来,爱因斯坦与友人半开玩笑地说:“这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。”
采用爱因斯坦求和约定,可以使数学表达式显得简洁明快。
在深度学习中经常涉及高阶张量运算,普通代数方法(如矩阵乘法)相对冗杂,因此引入爱因斯坦求和约定,其核心原理是将张量下标划分为自由标(free index)和哑标(dummy index),通过遍历自由标而对哑标逐元相乘求和的方式进行张量运算。
2 爱因斯坦求和原理
爱因斯坦求和原理并不复杂,具体而言,可以用下图来通俗理解,定义:
- 自由标:在输入输出侧都出现且各出现一次的索引号;
- 哑标:只在输入侧出现且出现两次的索引号。
输入、输出索引号的个数表示各参与运算张量的维度,例如下图表示两个二维张量做求和运算输出一个二维张量。

3 实例:字母表示法
3.1 向量运算
# ============================ 一维张量 ================================
a = torch.tensor([1, 2, 3], dtype=float)
b = torch.tensor([4, 5, 6], dtype=float)# 向量内积
print("向量内积:", torch.einsum("i, i ->", a, b))
# 向量点乘
print("向量点乘:",torch.einsum("i, i -> i", a, b))
结果如下:
>>> 向量内积: tensor(32., dtype=torch.float64)
>>> 向量点乘: tensor([ 4., 10., 18.], dtype=torch.float64)
3.2 矩阵运算
# ============================ 二维张量 ================================
c = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=float)
d = torch.ones((3, 4), dtype=float)# 矩阵乘法
print("矩阵乘法:", torch.einsum("ij, jk -> ik", c, d))
# 转置
print("矩阵转置:", torch.einsum("ij -> ji", c))
# 迹
print("迹:", torch.einsum("ii ->", c))
# 对角元
print("对角元:", torch.einsum("ii -> i", c))
# 矩阵按行求和
print("矩阵按行求和:", torch.einsum("ij -> j", c))
# 矩阵按列求和
print("矩阵按列求和:", torch.einsum("ij -> i", c))
# 矩阵所有元素求和
print("矩阵所有元素求和:", torch.einsum("ij ->", c))
# 矩阵乘向量
print("矩阵乘向量:", torch.einsum("ij, j -> i", c, a))
结果如下:
>>> 矩阵乘法: tensor([[ 6., 6., 6., 6.],[15., 15., 15., 15.],[24., 24., 24., 24.]], dtype=torch.float64)
>>> 矩阵转置: tensor([[1., 4., 7.],[2., 5., 8.],[3., 6., 9.]], dtype=torch.float64)
>>> 迹: tensor(15., dtype=torch.float64)
>>> 对角元: tensor([1., 5., 9.], dtype=torch.float64)
>>> 矩阵按行求和: tensor([12., 15., 18.], dtype=torch.float64)
>>> 矩阵按列求和: tensor([ 6., 15., 24.], dtype=torch.float64)
>>> 矩阵所有元素求和: tensor(45., dtype=torch.float64)
>>> 矩阵乘向量: tensor([14., 32., 50.], dtype=torch.float64)
3.3 张量运算
# ============================ 高阶张量 ================================
e = torch.arange(60.).reshape(5, 3, 4)
f = torch.arange(24.).reshape(2, 4, 3)# 三维张量压缩
print("三维张量压缩:", torch.einsum("kij, lji -> kl", e, f))
结果如下:
>>> 三维张量压缩: tensor([[ 440., 1232.],[ 1232., 3752.],[ 2024., 6272.],[ 2816., 8792.],[ 3608., 11312.]])
4 实例:常量表示法
以下结果同第三节,不再赘述
4.1 向量运算
'''
索引表示法
(张量后接输入索引, 最后是输出索引)
'''
# ============================ 一维张量 ================================
a = np.array([1, 2, 3], dtype=float)
b = np.array([4, 5, 6], dtype=float)# 向量内积
print("向量内积:", np.einsum(a, [0], b, [0]))
# 向量点乘
print("向量点乘:",np.einsum(a, [0], b, [0], [0]))
4.2 矩阵运算
# ============================ 二维张量 ================================
c = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=float)
d = np.ones((3, 4), dtype=float)# 矩阵乘法
print("矩阵乘法:", np.einsum(c, [0, 1], d, [1, 2], [0, 2]))
# 转置
print("矩阵转置:", np.einsum(c, [0, 1], [1, 0]))
# 迹
print("迹:", np.einsum(c, [0, 0]))
# 对角元
print("对角元:", np.einsum(c, [0, 0], [0]))
# 矩阵按行求和
print("矩阵按行求和:", np.einsum(c, [0, 1], [1]))
# 矩阵按列求和
print("矩阵按列求和:", np.einsum(c, [0, 1], [0]))
# 矩阵所有元素求和
print("矩阵所有元素求和:", np.einsum(c, [0, 1]))
# 矩阵乘向量
print("矩阵乘向量:", np.einsum(c, [0, 1], a, [1], [0]))
4.3 张量运算
# ============================ 高阶张量 ================================
e = np.arange(60.).reshape(5, 3, 4)
f = np.arange(24.).reshape(2, 4, 3)# 三维张量压缩
print("三维张量压缩:", np.einsum(e, [2, 0, 1], f, [3, 1, 0], [2, 3]))
🔥 更多精彩专栏:
- 《ROS从入门到精通》
- 《Pytorch深度学习实战》
- 《机器学习强基计划》
- 《运动规划实战精讲》
- …
相关文章:
Pytorch深度学习实战3-4:通俗理解张量Tensor的爱因斯坦求和(附实例)
目录1 爱因斯坦求和由来2 爱因斯坦求和原理3 实例:字母表示法3.1 向量运算3.2 矩阵运算3.3 张量运算4 实例:常量表示法4.1 向量运算4.2 矩阵运算4.3 张量运算1 爱因斯坦求和由来 爱因斯坦求和约定(Einstein summation convention)是一种标记的约定&#…...
GEE学习笔记 五十六:GEE中如何把文件导出到Google Drive的子目录
今天在群里看到有人在问一个问题,如何使用GEE把文件导出到Google Drive的子目录中?这里我就简单的说一下这个问题。 首先,在GEE中我们都知道了如何将数据导出导出Google Drive的文件夹中,如下面的一个例子: var geome…...
【Go基础】数据库编程
文章目录1. SQL语法简介2. MySQL最佳实践3. Go SQL驱动接口解读4. 数据库增删改查5. stmt6. SQLBuilder6.1 Go-SQLBuilder6.2 Gendry6.3 自行实现SQLBuilder7. GORM8. Go操作MongoDB1. SQL语法简介 SQL(Structured Query Language)是一套语法标准&#…...
【颠覆软件开发】华为自研IDE!未来IDE将不可预测!
IDE是软件开发生态的入口,但目前我们所使用的IDE基本都是由国外巨头提供,比如Visual Studio、Eclipse、JetBrains。这些IDE具有很高的断供风险,与操作系统、芯片、编程语言一样,非常重要。 随着越来越多的软件开始采用云上开发模…...
怎样从零基础学黑客
可以说想学黑客技术,要求你首先是一个“T”字型人才,也就是说电脑的所有领域你都能做的来,而且有一项是精通的。因此作为一个零基础的黑客爱好者来说,没有良好的基础是绝对不行的,下面我就针对想真正学习黑客的零基础朋…...
burp小程序抓包
身为一名码农,抓包肯定是一项必备技能。工作中遇到很多次需要对小程序进行抓包排查问题。下面分享一下我的抓包方式,使用的是电脑版小程序抓包,跟手机的方式都差不多的。 一、环境 微信版本:3.6.0.18 Burpsuite版本:…...
文件上传攻击骚操作
允许直接上传shell 只要有文件上传功能,那么就可以尝试上传webshell直接执行恶意代码,获得服务器权限,这是最简单也是最直接的利用。 允许上传压缩包 如果可以上传压缩包,并且服务端会对压缩包解压,那么就可能存在Zip …...
Scala流程控制(第四章:分支控制、嵌套分支、switch分支、for循环控制全、while与do~while、多重与中断)
文章目录第 4 章 流程控制4.1 分支控制 if-else4.1.1 单分支4.1.2 双分支4.1.3 多分支4.2 嵌套分支4.3 Switch 分支结构4.4 For 循环控制4.4.1 范围数据循环(To)4.4.2 范围数据循环(Until)4.4.3 循环守卫4.4.4 循环步长4.4.5 嵌套…...
华为OD机试真题Python实现【整理扑克牌】真题+解题思路+代码(20222023)
整理扑克牌 题目 给定一组数字,表示扑克牌的牌面数字,忽略扑克牌的花色,请安如下规则对这一组扑克牌进行整理。 步骤一: 对扑克牌进行分组,规则如下 当牌面数字相同张数大于等于4时,组合牌为炸弹;三张相同牌面数字+两张相同牌面数字,且三张牌与两张牌不相同时,组合牌…...
【春秋云境】CVE-2022-28525
靶标介绍: ED01-CMS v20180505 存在任意文件上传漏洞 打开靶场: 盲猜一波弱密码admin:admin就进去了。登录后在图中位置点击进行图片更新,需要将密码等都写上 抓包将图片信息进行替换,并修改文件名: POST /admin…...
Android设置取消系统闹钟
系统闹钟包名:com.android.deskclock 调用系统闹钟,首先在清单文件AndroidManifest.xml中添加权限: <uses-permission android:name"com.android.alarm.permission.SET_ALARM" />设置系统闹钟: public static v…...
使用 Node.js 多进程提高任务执行效率
什么是 Node 多进程? Node 是在单个线程中运行,我们虽然没办法开启额外的线程,但是可以开启进程集群。这样可以让下载任务和上传任务同时进行。 使用多进程进行初步代码优化 const dl require(./download.js) const ul require(./upload…...
[Golang实战]github.io部署个人博客hugo[新手开箱可用][小白教程]
[Golang实战]github.io部署个人博客hugo[新手开箱可用][小白教程]1.新手教程(小白也能学会)2.开始准备2.1myBlog是hugo的项目1.安装Hugo2.创建hugo项目2.2 xxxx.github.io是github.io中规定的pages项目3.成功部署4.TODO自动化workflows部署github.io1.新手教程(小白也能学会) …...
50个 Pandas 高频操作技巧,建议收藏
在数据分析和数据建模的过程中需要对数据进行清洗和整理等工作,有时需要对数据增删字段。 下面为大家介绍Pandas对数据的复杂查询、数据类型转换、数据排序、数据的修改、数据迭代以及函数的使用 文章目录技术交流01、复杂查询1、逻辑运算2、逻辑筛选数据3、函数筛…...
pygraphviz安装教程
0x01. 背景 最近在做casual inference,做实验时候想因果图可视化,遂需要安装pygraphviz,整了一下午,终于捣鼓好了,真头大。 环境: win10操作系统python3.9环境 0x02. 安装Graphviz 传送门:…...
HarmonyOS Connect认证测试
在HarmonyOS Connect生态产品的认证测试过程中,你是否存在这些疑问:认证流程具体包括哪些操作环节?如何根据实际场景选择合适的认证方式?如何选择认证测试标准的版本…… 本期FAQ为大家带来HarmonyOS Connect认证测试的常见问题…...
Datawhale团队第九期录取名单!
Datawhale团队 公示:Datawhale团队成员Datawhale成立四年了,从一开始的12个人,学习互助,到提议成立开源组织,做更多开源的事情,帮助更多学习者,也促使我们更好地成长。于是有了我们的使命&#…...
ChatGPT 的原理与未来研究方向
1、原理: 架构:chatGPT是一种基于转移学习的大型语言模型,它使用GPT-3.2 (Generative PretrainedTransformer2)模型的技术,使用了transformer的架构,并进行了进一步的训练和优化。InstructGPT/…...
基于UIAutomation+Python+Unittest+Beautifulreport的WindowsGUI自动化测试框架主入口main解析
文章目录1 main.py主入口2 testcase目录2.1 实例:test\_test\_mymusic.py2.2 实例:test\_toolbar.py3 page目录3.1 page/mymusic.py3.2 page/toolbar.py注: 1、本文为本站首发,他用请联系作者并注明出处,谢谢ÿ…...
华为OD机试真题Python实现【挑选字符串】真题+解题思路+代码(20222023)
挑选字符串 题目 给定a-z,26 个英文字母小写字符串组成的字符串A和B, 其中A可能存在重复字母,B不会存在重复字母, 现从字符串A中按规则挑选一些字母可以组成字符串B 挑选规则如下: 同一个位置的字母只能挑选一次, 被挑选字母的相对先后顺序不能被改变, 求最多可以同时…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

