使用 Node.js 多进程提高任务执行效率
什么是 Node 多进程?
Node 是在单个线程中运行,我们虽然没办法开启额外的线程,但是可以开启进程集群。这样可以让下载任务和上传任务同时进行。
使用多进程进行初步代码优化
const dl = require('./download.js')
const ul = require('./upload.js')
const source = require('./source.js')async function runTask() {const { originUrl, targetUrl } = source.getNext()const { data } = await dl(originUrl)await ul(targetUrl, data)runTask()
}runTask()
这个代码逻辑上是没问题的,但是它只能在 1 个 CPU 核心中运行。
我们完全可以使用 Node.js 的多进程来利用 CPU 的多核心来增加这个程序的吞吐量。
怎么改造呢?
也非常简单。
const os = require('os')
const cluster = require('cluster')
const dl = require('./download.js')
const ul = require('./upload.js')
const source = require('./source.js')function run() {if(cluster.isMaster) {const numCPUs = os.cpus().length;for(let idx = 0; idx < numCPUs; idx++) {cluster.fork();}} else {runTask()}
}async function runTask() {const { originUrl, targetUrl } = source.getNext()const { data } = await dl(originUrl)await ul(targetUrl, data)runTask()}
}run()
在上面的代码中,我添加了 os 和 cluster 模块。os 模块可以告诉我们运行环境的 CPU 信息,我们可以通过它来做为创建进程数量的限制条件。然后通过 cluster.isMaster 来判断是否是主进程,因为只有主进程才拥有 fork 的能力。
worker 和 master 通信
其实上面的代码还可以继续做更深层次的优化,仔细分析一下,下载速度和上传速度其实是不一致的。通常来说,下载速度会很慢,但上传速度会很快。我们可以让其他进程去下载文件,当下载成功之后,让主进程去上传文件。
Node 中的多进程之间不会共享内存,所以我们可以通过消息传递的方式,让下载进程通知主进程去上传文件。
const os = require('os')
const cluster = require('cluster')
const dl = require('./download.js')
const ul = require('./upload.js')
const source = require('./source.js')function run() {if(cluster.isMaster) {const numCPUs = os.cpus().length;for(let idx = 0; idx < numCPUs; idx++) {const worker = cluster.fork();worker.on('message', ({ targetUrl, data }) => {ul(targetUrl, data)})}} else {runTask()}
}async function runTask() {const { originUrl, targetUrl } = source.getNext()const { data } = await dl(originUrl)process.send({ targetUrl, data })runTask()
}run()
可以在主进程中通过 worker.on(‘message’, (msg)=>{}) 的方式来监听子进程发送的消息。在子进程中通过 process.send 来向主进程发送消息。
总结
在 NodeJS 中使用多进程非常简单,合理使用多进程,可以解放硬件的能力,让软件的运行效率得到肉眼可见的提升。
相关文章:
使用 Node.js 多进程提高任务执行效率
什么是 Node 多进程? Node 是在单个线程中运行,我们虽然没办法开启额外的线程,但是可以开启进程集群。这样可以让下载任务和上传任务同时进行。 使用多进程进行初步代码优化 const dl require(./download.js) const ul require(./upload…...
[Golang实战]github.io部署个人博客hugo[新手开箱可用][小白教程]
[Golang实战]github.io部署个人博客hugo[新手开箱可用][小白教程]1.新手教程(小白也能学会)2.开始准备2.1myBlog是hugo的项目1.安装Hugo2.创建hugo项目2.2 xxxx.github.io是github.io中规定的pages项目3.成功部署4.TODO自动化workflows部署github.io1.新手教程(小白也能学会) …...
50个 Pandas 高频操作技巧,建议收藏
在数据分析和数据建模的过程中需要对数据进行清洗和整理等工作,有时需要对数据增删字段。 下面为大家介绍Pandas对数据的复杂查询、数据类型转换、数据排序、数据的修改、数据迭代以及函数的使用 文章目录技术交流01、复杂查询1、逻辑运算2、逻辑筛选数据3、函数筛…...
pygraphviz安装教程
0x01. 背景 最近在做casual inference,做实验时候想因果图可视化,遂需要安装pygraphviz,整了一下午,终于捣鼓好了,真头大。 环境: win10操作系统python3.9环境 0x02. 安装Graphviz 传送门:…...
HarmonyOS Connect认证测试
在HarmonyOS Connect生态产品的认证测试过程中,你是否存在这些疑问:认证流程具体包括哪些操作环节?如何根据实际场景选择合适的认证方式?如何选择认证测试标准的版本…… 本期FAQ为大家带来HarmonyOS Connect认证测试的常见问题…...
Datawhale团队第九期录取名单!
Datawhale团队 公示:Datawhale团队成员Datawhale成立四年了,从一开始的12个人,学习互助,到提议成立开源组织,做更多开源的事情,帮助更多学习者,也促使我们更好地成长。于是有了我们的使命&#…...
ChatGPT 的原理与未来研究方向
1、原理: 架构:chatGPT是一种基于转移学习的大型语言模型,它使用GPT-3.2 (Generative PretrainedTransformer2)模型的技术,使用了transformer的架构,并进行了进一步的训练和优化。InstructGPT/…...
基于UIAutomation+Python+Unittest+Beautifulreport的WindowsGUI自动化测试框架主入口main解析
文章目录1 main.py主入口2 testcase目录2.1 实例:test\_test\_mymusic.py2.2 实例:test\_toolbar.py3 page目录3.1 page/mymusic.py3.2 page/toolbar.py注: 1、本文为本站首发,他用请联系作者并注明出处,谢谢ÿ…...
华为OD机试真题Python实现【挑选字符串】真题+解题思路+代码(20222023)
挑选字符串 题目 给定a-z,26 个英文字母小写字符串组成的字符串A和B, 其中A可能存在重复字母,B不会存在重复字母, 现从字符串A中按规则挑选一些字母可以组成字符串B 挑选规则如下: 同一个位置的字母只能挑选一次, 被挑选字母的相对先后顺序不能被改变, 求最多可以同时…...
Orcad放置字符标注、文本框、注释及图片方法教程
实际设计当中,经常需要对一些功能进行文字说明,或者对可选线路进行文字标注。这些文字注释可以大大增强线路的可读性,后期也可以让布线工程充分对所关注的线路进行特别处理。1、放置字符标注 字符标注主要针对的是较短的文字说明。 ÿ…...
秒懂算法 | 子集树模型——0-1背包问题的回溯算法及动态规划改进
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为W。一种物品要么全部装入背包,要么全部不装入背包,不允许部分装入。装入背包的物品的总重量不超过背包的容量。问应如何选择装入背包的物品,使得装入背包中的物品总价值最大? 01、问题分析——解空间及搜索…...
koc转化效果评估模型是什么?如何根据模型来进行投放
目前小红书有超2亿月活用户,共有4300万的分享,当之无愧的成为众多年轻用户心中的“消费决策”平台。那怎么将如此巨大的流量切实的转化为效果是一个挑战。今天就来简单分享一下这个挑战的答案。其实可以借助模型来帮助,这就是koc转化效果评估…...
vuejs-datepicker|简单易用的Vue.js日期选择组件
vuejs-datepicker是一个简单易用的Vue.js日期选择组件。它使用了Bootstrap 4的样式,支持多种语言,具有直观的界面,易于配置和扩展。👉 效果演示 👉如果您想使用vuejs-datepicker,首先您需要安装它ÿ…...
【c++】类和对象3—初始化列表、类对象作为类成员、静态成员
文章目录初始化列表类对象作为类成员静态成员初始化列表 作用:c提供了初始化 语法:构造函数():属性1(值1),属性2(值2),…{} #include<iostream> using namespace std;class Person { public://1、传统初始化操作/*Person(int a, int b, int c) …...
【基础算法】数的范围
🌹作者:云小逸 📝个人主页:云小逸的主页 📝Github:云小逸的Github 🤟motto:要敢于一个人默默的面对自己,强大自己才是核心。不要等到什么都没有了,才下定决心去做。种一颗树,最好的时间是十年前…...
FreeRTOS入门(01):基础说明与使用演示
文章目录目的基础说明系统移植基础使用演示数据类型和命名风格总结碎碎念目的 FreeRTOS是一个现在非常流行的实时操作系统(Real Time Operating System)。本文将介绍FreeRTOS入门使用相关内容,这篇是第一篇,主要介绍基础背景方面…...
华为OD机试真题Python实现【交换字符】真题+解题思路+代码(20222023)
交换字符 题目 给定一个字符串S 变化规则: 交换字符串中任意两个不同位置的字符M S都是小写字符组成 1 <= S.length <= 1000 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总 输入 一串小写字母组成的字符串 输出 按照要求变换得到…...
Word处理控件Aspose.Words功能演示:使用 Java 在 MS Word 文档中进行邮件合并
Aspose.Words 是一种高级Word文档处理API,用于执行各种文档管理和操作任务。API支持生成,修改,转换,呈现和打印文档,而无需在跨平台应用程序中直接使用Microsoft Word。此外,Aspose API支持流行文件格式处理…...
产品未出 百度朋友圈“开演”
ChatGPT这股AI龙卷风刮到国内时,人们齐刷刷望向百度,这家在国内对AI投入最高的公司最终出手了,大模型新项目文心一言(ERNIE Bot)将在3月正式亮相,对标微软投资的ChatGPT。 文心一言产品未出,百…...
emacs 中的键盘宏
emacs 中的键盘宏 宏定义是emacs比较强大的功能,自定义宏然后绑定快捷键之后就更加爽了。 vim 当然也有宏功能,而且用法简单,例如录制宏到a寄存器:qa...q, 执行宏a: a 世界就是由循环和递归构成的. 宏定义就是一个执行体,为了以后的循环做准备的 开启宏记录 C-x ( 或…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
