Pytorch中如何加载数据、Tensorboard、Transforms的使用
一、Pytorch中如何加载数据
在Pytorch中涉及到如何读取数据,主要是两个类一个类是Dataset、Dataloader
Dataset 提供一种方式获取数据,及其对应的label。主要包含以下两个功能:
如何获取每一个数据以及label
告诉我们总共有多少的数据
Dataloader,可以对数据进行打包,为后面的网络提供不同的数据形式。
二、Tensorboard的使用,用来观察训练结果
from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("log")# writer.add_image()for i in range(100):writer.add_scalar("y=x", i, i)writer.close()
在Terminal中先切换到conda activate pytorch
使用命令 tensorboard --logdir=logs

TensorBoard的使用
1、使用add_image()方法
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
# 利用openCV中的numpy库可以获得numpy型的图片writer = SummaryWriter("log")
img_path = "../dataset/bees/26589803_5ba7000313.jpg"
img_PIL = Image.open(img_path) # 打开图片
img_array = np.array(img_PIL) # 图片转换
print(type(img_array)) # 打印图片类型
print(img_array.shape) # 打印图片格式writer.add_images("test", img_array, 2, dataformats='HWC') # 根据img_array.shape来指定,如果不指定dataformats就会报错
# y = 2x
for i in range(100):writer.add_scalar("y=2x", 2*i, i)writer.close()

三、Transforms的使用
transform表示对图片进行一些变换
python的用法 -> tensor数据类型
通过transform.ToTensor去解决两个问题:
transforms该如何使用(Python)
为什么我们需要Tensor的数据类型?

from torchvision import transforms
from PIL import Imageimg_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
print(tensor_img)
运行后的结果
D:\tools\anaconda\envs\pytorch\python.exe D:/code/captcha_ocr-main/learn/transforms.py
tensor([[[0.5725, 0.5725, 0.5725, ..., 0.5686, 0.5725, 0.5765],[0.5725, 0.5725, 0.5725, ..., 0.5686, 0.5725, 0.5765],[0.5686, 0.5686, 0.5725, ..., 0.5686, 0.5725, 0.5765],...,[0.5490, 0.5647, 0.5725, ..., 0.6314, 0.6235, 0.6118],[0.5608, 0.5765, 0.5843, ..., 0.5961, 0.5843, 0.5765],[0.5725, 0.5843, 0.5922, ..., 0.5647, 0.5529, 0.5490]],[[0.4471, 0.4471, 0.4471, ..., 0.4235, 0.4275, 0.4314],[0.4471, 0.4471, 0.4471, ..., 0.4235, 0.4275, 0.4314],[0.4431, 0.4431, 0.4471, ..., 0.4235, 0.4275, 0.4314],...,[0.4000, 0.4157, 0.4235, ..., 0.4706, 0.4627, 0.4510],[0.4118, 0.4275, 0.4353, ..., 0.4431, 0.4314, 0.4235],[0.4235, 0.4353, 0.4431, ..., 0.4118, 0.4000, 0.3961]],[[0.2471, 0.2471, 0.2471, ..., 0.2588, 0.2627, 0.2667],[0.2471, 0.2471, 0.2471, ..., 0.2588, 0.2627, 0.2667],[0.2431, 0.2431, 0.2471, ..., 0.2588, 0.2627, 0.2667],...,[0.2157, 0.2314, 0.2392, ..., 0.2510, 0.2431, 0.2314],[0.2275, 0.2431, 0.2510, ..., 0.2196, 0.2078, 0.2000],[0.2392, 0.2510, 0.2588, ..., 0.1961, 0.1843, 0.1804]]])Process finished with exit code 0
加载tensor类型的图片:
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
writer = SummaryWriter("log")
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer.add_image("Tensor_img", tensor_img)
writer.close()
四、常见的transforms类的使用
- ToTensor类
将PIL图片转换成tensor图片。
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)
tensor_trans = transforms.ToTensor() # 创建ToTensor()对象
tensor_img = tensor_trans(img) # 传入图片参数,将PIL图片转换成tensor图片
writer.add_image("Tensor_img", tensor_img)
writer.close()

2. Normalize类
对tensor类型的图片进行归一化处理。
Normalize的使用:归一化处理
公式:output[channel] = (input[channel] - mean[channel]) / std[channel]
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)# Normalize的使用
print(tensor_img[0][0][0]) # 归一化处理之前的数据
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0]) # 归一化处理后的结果
writer.add_image("Normalize", img_norm)writer.close()


3. Resize类:
重置图片大小。
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)print(tensor_img[0][0][0]) # 归一化处理之前的数据
trans_norm = transforms.Normalize([1, 3, 5], [3, 2, 1])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0]) # 归一化处理后的结果
writer.add_image("Normalize", img_norm)writer.close()# Resize的使用:重置图片大小
print(img.size) # (500, 464)
trans_resize = transforms.Resize((512, 512))img_resize = trans_resize(img)
print(img_resize) # <PIL.Image.Image image mode=RGB size=512x512 at 0x2A17E774248> img_resize = tensor_trans(img_resize)
writer.add_image("Resize", img_resize, 0)
print("" + img_resize)
writer.close()


4. Compose的使用
等比例缩放。
Compose的使用:整体缩放,不改变高宽比例
Compose()中的参数需要的是一个列表,列表中的数据需要的是transforms类型。
即 Compose([transforms参数1, transforms参数2, …])
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)print(tensor_img[0][0][0]) # 归一化处理之前的数据
trans_norm = transforms.Normalize([1, 3, 5], [3, 2, 1])
img_norm = trans_norm(tensor_img)
# print(img_norm[0][0][0]) # 归一化处理后的结果
writer.add_image("Normalize", img_norm)# Resize的使用:重置图片大小
print(img.size) # (500, 464)
trans_resize = transforms.Resize((512, 512))img_resize = trans_resize(img)
print(img_resize) # <PIL.Image.Image image mode=RGB size=512x512 at 0x2A17E774248># Compose的使用
img_resize = tensor_trans(img_resize)
writer.add_image("Resize", img_resize, 0)
# print(img_resize)
trans_resize_2 = transforms.Resize(1024)
trans_compose = transforms.Compose([trans_resize_2, tensor_trans])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)writer.close()
5.RandomCrop类的使用
随机裁剪。
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter# Tensor的使用
writer = SummaryWriter("log")
img_path = "../dataset/bees/10870992_eebeeb3a12.jpg"
img = Image.open(img_path)
print(img)tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)writer.add_image("Tensor_img", tensor_img)print(tensor_img[0][0][0]) # 归一化处理之前的数据
trans_norm = transforms.Normalize([1, 3, 5], [3, 2, 1])
img_norm = trans_norm(tensor_img)
# print(img_norm[0][0][0]) # 归一化处理后的结果
writer.add_image("Normalize", img_norm)# Resize的使用:重置图片大小
print(img.size) # (500, 464)
trans_resize = transforms.Resize((512, 512))img_resize = trans_resize(img)
print(img_resize) # <PIL.Image.Image image mode=RGB size=512x512 at 0x2A17E774248># Compose的使用:
img_resize = tensor_trans(img_resize)
writer.add_image("Resize", img_resize, 0)
# print(img_resize)
trans_resize_2 = transforms.Resize(1024)
trans_compose = transforms.Compose([trans_resize_2, tensor_trans])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2, 1)# RendomCrop类的使用:随机裁剪
# trans_random = transforms.RandomCrop(512)
trans_random = transforms.RandomCrop(1000, 500)
trans_compose_2 = transforms.Compose([trans_random, tensor_trans])
for i in range(10):img_crop = trans_compose_2(img)# writer.add_image("RancomCrop", img_crop, i)writer.add_image("RancomCropHW", img_crop, i)writer.close()

相关文章:
Pytorch中如何加载数据、Tensorboard、Transforms的使用
一、Pytorch中如何加载数据 在Pytorch中涉及到如何读取数据,主要是两个类一个类是Dataset、Dataloader Dataset 提供一种方式获取数据,及其对应的label。主要包含以下两个功能: 如何获取每一个数据以及label 告诉我们总共有多少的数据 Datal…...
python如何使用打开文件对话框选择文件?
python如何使用打开文件对话框选择文件? ━━━━━━━━━━━━━━━━━━━━━━ 在Python中,可以使用Tkinter库中的filedialog子模块来打开一个文件对话框以供用户选择文件。以下是一个简单的例子,演示如何使用tkinter.filedialog打…...
虚拟化和容器
文章目录 1 介绍1.1 简介1.2 虚拟化工作原理1.3 两大核心组件:QEMU、KVMQEMUKVM 1.4 发展历史1.5 虚拟化类型1.6 云计算与虚拟化1.7 HypervisorHypervisor分为两大类 1.8 虚拟化 VS 容器 2 虚拟化应用dockerdocker 与虚拟机的区别 K8Swine 参考 1 介绍 1.1 简介 虚…...
LeetCode-78-子集
题目描述: 给你一个整数数组 nums ,数组中的元素 互不相同。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 题目链接:LeetCode-78-子集 解题思路:递归回溯 题…...
js对象转json文件
目录 需求1.首先寻找类似需求的数据2.对数据进行转换3.将转换后的数据转为json文件4.完整代码 需求 需求:在做项目时,遇到了需要制作地址列表的功能,这一般都会用到一些开源的组件库,但是有个问题是不同组件库之间的城市列表数据结…...
【免费模板】2023数学建模国赛word+latex模板免费分享
无需转发 免费获取2023国赛模板,获取方式见文末 模板文件预览如下: 模板参考格式如下: (题目)XXXXXX 摘 要: 开头段:需要充分概括论文内容,一般两到三句话即可,长度控…...
基于HBuilder X平台下的 驾校报名考试管理系统 uniapp 微信小程序3n9o5
本课题研究的是基于HBuilder X系统平台下的驾校管理系统,开发这款驾校管理系统主要是为了帮助学员可以不用约束时间与地点进行查看教练信息、考场信息等内容。本文详细讲述了驾校管理系统的界面设计及使用,主要包括界面的实现、控件的使用、界面的布局和…...
电商3D资产优化管线的自动化
如果你曾经尝试将从 CAD 程序导出的 3D 模型上传到 WebGL 或 AR 服务,那么可能会遇到最大文件大小、永无休止的进度条和糟糕的帧速率等问题。 为了创作良好的在线交互体验,优化 3D 数据的大小和性能至关重要。 这也有利于你的盈利,因为较小的…...
Android 大图显示优化方案-加载Gif 自定义解码器
基于Glide做了图片显示的优化,尤其是加载Gif图的优化,原生Glide加载Gif图性能较低。在原生基础上做了自定义解码器的优化,提升Glide性能 Glide加载大图和Gif 尤其是列表存在gif时,会有明显卡顿,cpu和内存占用较高&…...
Leetcode.664 奇怪的打印机
题目链接 Leetcode.664 奇怪的打印机 hard 题目描述 有台奇怪的打印机有以下两个特殊要求: 打印机每次只能打印由 同一个字符 组成的序列。每次可以在从起始到结束的任意位置打印新字符,并且会覆盖掉原来已有的字符。 给你一个字符串 s ,你…...
正中优配:散户怎么实现T+0?散户在股市上怎么变相T+0?
T0是指当天买入的标的物,在当天就能卖出的买卖方式,其中,在a股市场上,散户能够通过一些办法直接地完成T0买卖方式,接下来,正中优配为大家预备了相关内容,以供参阅。 散户在股票市场上࿰…...
ZooInspector
一、在window,使用我们先打开Zookeeper,目录bin下的zkServer.cmd,把Zookeeper运行起来 编辑https://img.111com.net/attachment/art/187687/5f0c25fbe580c.png 二、可以使用目录bin下的zkCli.cmd,查询Zookeeper数据的方式,但是…...
2023高教社杯 国赛数学建模B题思路 - 多波束测线问题
1 赛题 B 题 多波束测线问题 单波束测深是利用声波在水中的传播特性来测量水体深度的技术。声波在均匀介质中作匀 速直线传播, 在不同界面上产生反射, 利用这一原理,从测量船换能器垂直向海底发射声波信 号,并记录从声波发射到信…...
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(9 月 4 日论文合集)
文章目录 一、检测相关(8篇)1.1 Impact of Image Context for Single Deep Learning Face Morphing Attack Detection1.2 A Theoretical and Practical Framework for Evaluating Uncertainty Calibration in Object Detection1.3 What Makes Good Open-Vocabulary Detector: A…...
游戏优化注意点
特效性能分析: 1、粒子数量太多,这个会对CPU的耗时产生一定的压力。 2、粒子的size太大,这样容易导致渲染的像素数量非常高。 3、Overdraw非常高,当场上粒子数非常高导致叠层很高,会造成Overdraw很高,这会…...
【unity3D】如何修改相机的默认视角
💗 未来的游戏开发程序媛,现在的努力学习菜鸡 💦本专栏是我关于游戏开发的学习笔记 🈶本篇是unity的如何修改相机的默认视角 如何修改相机的默认视角 Game窗口运行的话视角是这样的: 此时Scene窗口的视角是这样的&…...
Docker的初级使用
Docker的初级使用 Docker的安装1.1 如果之前安装过旧版本的Docker,可以使用下面命令卸载:1.2.安装docker1.3.启动docker1.4.配置镜像加速2.CentOS7安装DockerCompose2.1.下载2.2.修改文件权限2.3.Base自动补全命令:3.Docker镜像仓库3.1.简化版镜像仓库3.2.带有图形化界面版本…...
minimumLineSpacing和minimumInteritemSpacing问题研究
结论:minimumLineSpacing和minimumInteritemSpacing问题研究 (1)如果cell的宽度是固定的,方向是水平时, 1 3 5 2 4 6 minimumLineSpacing 是 12 到 34的距离 minimumInteritemSpacing 是1到2的距离 (2)如果cell的宽度是不固定的࿰…...
【操作系统】聊聊Linux内存工作机制
内存主要是用来存储系统和应用程序的指令、数据、缓存等 内存映射 内存是需要安全机制保护的,所以只有内核才可以直接访问物理内存。进程如果要访问内存需要通过独立的虚拟地址空间。 虚拟地址空间其实包含两部分。一部分是内核空间,另一部分就是用户…...
MySQL索引的类型有哪些?
分析&回答 从功能逻辑角度,可分为: 普通索引 INDEX(普通索引) ALTER TABLE table_name ADD INDEX index_name ( column )唯一索引 UNIQUE(唯一索引) ALTER TABLE table_name ADD UNIQUE (column)主键索引 PRIMARY KEY(主键索引…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)
+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...
Java后端检查空条件查询
通过抛出运行异常:throw new RuntimeException("请输入查询条件!");BranchWarehouseServiceImpl.java // 查询试剂交易(入库/出库)记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...
