8月AI实战:工业视觉缺陷检测
8月AI实战:工业视觉缺陷检测
–基于tflite的yolov8模型优化和推理
操作视频见B站连接:aidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理bilibiliaidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理
1 模型优化
将onnx模型转化为tflite模型
打开网站:http://aimo.aidlux.com/
输入试用账号和密码:账号:AIMOTC001 ,密码:AIMOTC001
通过页面中的提示AI Model Optimizer,依次执行步骤①上传模型②选择目标平台③参数设置④转换结果。
通过上述①-④可将onnx模型转为tflite模型
模型转换过程包含如下日志信息
2023-09-07 19:47:05,969 - INFO : Optimization started.
2023-09-07 19:47:05,970 - INFO : [ONNX-SIM] Clean ONNX Model input node.
2023-09-07 19:47:06,733 - INFO : [ONNX2TFLITE] Start converting to TFLITE.
2023-09-07 19:47:28,511 - INFO : Model optimization done.
2 推理的py文件
模型采用课程中提供的yolov8_slimneck_SIOU.ONNX,转化完模型路径及名称,如下
# 模型
model_path = "/home/lesson3/yolov8_slimneck_SIOU_tflite/yolov8_slimneck_SIOU_fp32.tflite"
# 测试图片路径
image_path = "/home/lesson3/test"
模型推理过程包含如下步骤:
- 初始化aidlite类并创建aidlite对象
aidlite = aidlite_gpu.aidlite()
print("ok")
- 加载模型
value = aidlite.ANNModel(model_path, [640 * 640 * 3 * 4], [8400 * 11 * 4], 4, 0)
print("gpu:", value)
包含遍历每一张图片
for root, dirs, files in os.walk(image_path):num = 0for file in files:file = os.path.join(root, file)frame = cv2.imread(file)x_scale = frame.shape[1] / 640y_scale = frame.shape[0] / 640
将图片转换为模型输入的640*640尺寸
img = cv2.resize(frame, (640, 640))
# img_copy=img.co
img = img / 255.0
img = np.expand_dims(img, axis=0)
img = img.astype(dtype=np.float32)
print(img.shape)
- 传入模型输入数据
aidlite.setInput_Float32(img)
- 执行推理
start = time.time()
aidlite.invoke()
end = time.time()
timerValue = 1000 * (end - start)
print("infer time(ms):{0}", timerValue)
- 获取输出
pred = aidlite.getOutput_Float32(0)
# print(pred.shape)
pred = np.array(pred)
print(pred.shape)
pred = np.reshape(pred, (8400, 11))
print(pred.shape) # shape=(8400,11)
- 后处理,解析输出
boxes, scores, classes = postProcess(pred, confThresh, NmsThresh)
- 绘制保存图像
ret_img = draw(frame, x_scale, y_scale, boxes, scores, classes)
ret_img = ret_img[:, :, ::-1]
num += 1
image_file_name = "/home/result/res" + str(num) + ".jpg"
8. 保存图片
cv2.imwrite(image_file_name, ret_img)
相关文章:
8月AI实战:工业视觉缺陷检测
8月AI实战:工业视觉缺陷检测 –基于tflite的yolov8模型优化和推理 操作视频见B站连接:aidlux模型优化工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理bilibiliaidlux模型优化工业缺陷检测~~完美用我…...
Kubernetes的ExternalName详解
ExternalName类型的Service在Kubernetes中用于将外部服务(不是Kubernetes集群内的服务)映射到Kubernetes集群内的Service。 样例 其创建方法如下: kind: Service apiVersion: v1 metadata:name: my-external-servicenamespace: cv-console…...
使用 Pandera 的 PySpark 应用程序的数据验证
推荐:使用 NSDT场景编辑器 快速搭建3D应用场景 本文简要介绍了 Pandera 的主要功能,然后继续解释 Pandera 数据验证如何与自最新版本 (Pandera 0.16.0) 以来使用本机 PySpark SQL 的数据处理工作流集成。 Pandera 旨在与其他流行…...

README
一、Markdown 简介 Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档。 应用 当前许多网站都广泛使用 Markdown 来撰写帮助文档或是用于论坛上发表消息。例如:GitHub、简书、知乎等 编辑器 推荐使用Typora,官…...

Excel周报制作
Excel周报制作 文章目录 Excel周报制作一、理解数据二、数据透视表三、常用函数1.sum-求和2.sumif-单条件求和3.sumifs-多条件求和4.sum和subtotal的区别5.if函数6.if嵌套7.vlookup函数和数据透视表聚合8.index和match函数 四、周报开发五、报表总览 一、理解数据 这是一个线上…...
Qt QtCreator 所有官方下载地址
Qt QtCreator 所有版本官方下载地址 1.所有版本QT下载地址 : Index of /archive/qt 所有Qt Creator下载地址: Index of /archive/qtcreator 所有Qt VS开发插件下载地址: Index of /archive/vsaddin 4.Qt官网镜像下载地址: Index of /…...

C++包含整数各位重组
void 包含整数各位重组() {//缘由https://bbs.csdn.net/topics/395402016int shu 100000, bs 4, bi shu * bs, a 0, p 0, d 0;while (shu < 500000)if (a<6 && (p to_string(shu).find(to_string(bi)[a], p)) ! string::npos && (d to_string(bi…...
数学建模--模型总结(5)
优化问题: 线性规划,半定规划、几何规划、非线性规划,整数规划,多目标规划(分层序列法),最优控制(结合微分方程组)、变分法、动态规划,存贮论、代理模型、响…...

JavaScript 中的原型到底该如何理解?
JavaScript作为一个基于原型的OOP,和我们熟知的基于类的面向对象编程语言有很大的差异。如果不理解其中的本质含义,则无法深入理解JavaScript的诸多特性,以及由此产生的诸多“坑”。在讨论“原型”的概念之前,我们先来讨论一下“类…...

【MySQL基础】事务隔离03
目录 隔离性与隔离级别事务隔离的实现事务的启动方式MySQL事务代码示例 在MySQL中,事务支持是在引擎层实现的。MySQL是一个支持多引擎的系统,但并不是所有的引擎都支持事务。比如 MySQL 原生的 MyISAM 引擎就不支持事务,这也是 MyISAM 被 Inn…...
2023高教社杯数学建模C题思路分析 - 蔬菜类商品的自动定价与补货决策
# 1 赛题 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此, 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬菜…...

【MySQL】初见数据库
目录 什么是MySQL 为什么要使用数据库 数据库基础 数据库的本质 存储引擎 常用操作 登录mysql 创建数据库 使用数据库 查看数据库 创建数据库表 查看表 向表中插入数据 查询表中数据 什么是MySQL 🍒在我们服务器安装完 MySQL 服务之后,经…...
选择合适的帧率和分辨率:优化RTSP流视频抓取(java)
引言 在实时视频流应用中,选择适当的帧率和分辨率对于确保视频流的顺畅播放和图像质量至关重要。本文将向您介绍如何使用Java和JavaCV库中的FFmpegFrameGrabber来从RTSP流中抓取图像,并在抓取时设置帧率和分辨率。 一、配置开发环境 首先,…...
HTTP协议都有哪些方法?
分析&回答 HTTP1.0定义了三种请求方法: GET, POST 和 HEAD方法HTTP1.1新增了五种请求方法:OPTIONS, PUT, DELETE, TRACE 和 CONNECT 方法描述HEAD请求资源的头部信息, 并且这些头部与 HTTP GET 方法请求时返回的一致. 该请求方法的一个使用场景是在…...

数学建模--非整数规划求解的Python实现
目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 #非线性规划模型求解: #我们采用通用的minimize函数来求解 #minimize(f,x,method,bounds,contrains) #f是待求函数 #x是代求的自变量 #method是求解方法 #bounds是取值范围边界 #contrains是约束条件 &q…...

LeetCode 48题: 旋转图像
题目 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]]…...

集成快递物流平台(快递100、快递鸟、闪送)连通多个应用
场景描述: 基于快递物流平台(快递100、快递鸟、闪送等)开放能力,无代码集成快递物流平台与多个应用互连互通。通过Aboter可搭建业务自动化流程,实现多个应用之间的数据连接。 连接器: 快递100快递鸟闪送…...

搭建hadoop集群的常见问题及解决办法
问题一: namenode -format重复初始化 出现问题的原因是重复初始化时会重新生成集群ID,而dn还是原先的集群ID,两者不匹配时无法启动相应的dn进程。 怎么查找问题原因:在logs目录下找到对应节点的.log文件,使用tail -200 文件名来查…...

virtualbox centos 使用NAT模式上网
新安装了centos7之后,发现无法yum,无法ping外网。ping 外网域名无法ping通。 virtualbox的nat 网卡已经打开了。 需要手动打开centos7的网卡(centos7.9) 可以通过 ip addr 命令查看网卡地址 1: lo: <LOOPBACK,UP,LOWER_UP>…...
蓝桥杯官网填空题(梅森素数)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 如果一个数字的所有真因子之和等于自身,则称它为“完全数”或“完美数” 例如: 6 1 2 3 28 1 2 4 7 14早在公元前 300300 多年&am…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...