8月AI实战:工业视觉缺陷检测
8月AI实战:工业视觉缺陷检测
–基于tflite的yolov8模型优化和推理
操作视频见B站连接:aidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理bilibiliaidlux模型优化+工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理
1 模型优化
将onnx模型转化为tflite模型
打开网站:http://aimo.aidlux.com/
输入试用账号和密码:账号:AIMOTC001 ,密码:AIMOTC001
通过页面中的提示AI Model Optimizer,依次执行步骤①上传模型②选择目标平台③参数设置④转换结果。
通过上述①-④可将onnx模型转为tflite模型
模型转换过程包含如下日志信息
2023-09-07 19:47:05,969 - INFO : Optimization started.
2023-09-07 19:47:05,970 - INFO : [ONNX-SIM] Clean ONNX Model input node.
2023-09-07 19:47:06,733 - INFO : [ONNX2TFLITE] Start converting to TFLITE.
2023-09-07 19:47:28,511 - INFO : Model optimization done.
2 推理的py文件
模型采用课程中提供的yolov8_slimneck_SIOU.ONNX,转化完模型路径及名称,如下
# 模型
model_path = "/home/lesson3/yolov8_slimneck_SIOU_tflite/yolov8_slimneck_SIOU_fp32.tflite"
# 测试图片路径
image_path = "/home/lesson3/test"
模型推理过程包含如下步骤:
- 初始化aidlite类并创建aidlite对象
aidlite = aidlite_gpu.aidlite()
print("ok")
- 加载模型
value = aidlite.ANNModel(model_path, [640 * 640 * 3 * 4], [8400 * 11 * 4], 4, 0)
print("gpu:", value)
包含遍历每一张图片
for root, dirs, files in os.walk(image_path):num = 0for file in files:file = os.path.join(root, file)frame = cv2.imread(file)x_scale = frame.shape[1] / 640y_scale = frame.shape[0] / 640
将图片转换为模型输入的640*640尺寸
img = cv2.resize(frame, (640, 640))
# img_copy=img.co
img = img / 255.0
img = np.expand_dims(img, axis=0)
img = img.astype(dtype=np.float32)
print(img.shape)
- 传入模型输入数据
aidlite.setInput_Float32(img)
- 执行推理
start = time.time()
aidlite.invoke()
end = time.time()
timerValue = 1000 * (end - start)
print("infer time(ms):{0}", timerValue)
- 获取输出
pred = aidlite.getOutput_Float32(0)
# print(pred.shape)
pred = np.array(pred)
print(pred.shape)
pred = np.reshape(pred, (8400, 11))
print(pred.shape) # shape=(8400,11)
- 后处理,解析输出
boxes, scores, classes = postProcess(pred, confThresh, NmsThresh)
- 绘制保存图像
ret_img = draw(frame, x_scale, y_scale, boxes, scores, classes)
ret_img = ret_img[:, :, ::-1]
num += 1
image_file_name = "/home/result/res" + str(num) + ".jpg"
8. 保存图片
cv2.imwrite(image_file_name, ret_img)
相关文章:
8月AI实战:工业视觉缺陷检测
8月AI实战:工业视觉缺陷检测 –基于tflite的yolov8模型优化和推理 操作视频见B站连接:aidlux模型优化工业缺陷检测~~完美用我的华为手机实现缺陷检测的推理bilibiliaidlux模型优化工业缺陷检测~~完美用我…...
Kubernetes的ExternalName详解
ExternalName类型的Service在Kubernetes中用于将外部服务(不是Kubernetes集群内的服务)映射到Kubernetes集群内的Service。 样例 其创建方法如下: kind: Service apiVersion: v1 metadata:name: my-external-servicenamespace: cv-console…...
使用 Pandera 的 PySpark 应用程序的数据验证
推荐:使用 NSDT场景编辑器 快速搭建3D应用场景 本文简要介绍了 Pandera 的主要功能,然后继续解释 Pandera 数据验证如何与自最新版本 (Pandera 0.16.0) 以来使用本机 PySpark SQL 的数据处理工作流集成。 Pandera 旨在与其他流行…...
README
一、Markdown 简介 Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档。 应用 当前许多网站都广泛使用 Markdown 来撰写帮助文档或是用于论坛上发表消息。例如:GitHub、简书、知乎等 编辑器 推荐使用Typora,官…...
Excel周报制作
Excel周报制作 文章目录 Excel周报制作一、理解数据二、数据透视表三、常用函数1.sum-求和2.sumif-单条件求和3.sumifs-多条件求和4.sum和subtotal的区别5.if函数6.if嵌套7.vlookup函数和数据透视表聚合8.index和match函数 四、周报开发五、报表总览 一、理解数据 这是一个线上…...
Qt QtCreator 所有官方下载地址
Qt QtCreator 所有版本官方下载地址 1.所有版本QT下载地址 : Index of /archive/qt 所有Qt Creator下载地址: Index of /archive/qtcreator 所有Qt VS开发插件下载地址: Index of /archive/vsaddin 4.Qt官网镜像下载地址: Index of /…...
C++包含整数各位重组
void 包含整数各位重组() {//缘由https://bbs.csdn.net/topics/395402016int shu 100000, bs 4, bi shu * bs, a 0, p 0, d 0;while (shu < 500000)if (a<6 && (p to_string(shu).find(to_string(bi)[a], p)) ! string::npos && (d to_string(bi…...
数学建模--模型总结(5)
优化问题: 线性规划,半定规划、几何规划、非线性规划,整数规划,多目标规划(分层序列法),最优控制(结合微分方程组)、变分法、动态规划,存贮论、代理模型、响…...
JavaScript 中的原型到底该如何理解?
JavaScript作为一个基于原型的OOP,和我们熟知的基于类的面向对象编程语言有很大的差异。如果不理解其中的本质含义,则无法深入理解JavaScript的诸多特性,以及由此产生的诸多“坑”。在讨论“原型”的概念之前,我们先来讨论一下“类…...
【MySQL基础】事务隔离03
目录 隔离性与隔离级别事务隔离的实现事务的启动方式MySQL事务代码示例 在MySQL中,事务支持是在引擎层实现的。MySQL是一个支持多引擎的系统,但并不是所有的引擎都支持事务。比如 MySQL 原生的 MyISAM 引擎就不支持事务,这也是 MyISAM 被 Inn…...
2023高教社杯数学建模C题思路分析 - 蔬菜类商品的自动定价与补货决策
# 1 赛题 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此, 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬菜…...
【MySQL】初见数据库
目录 什么是MySQL 为什么要使用数据库 数据库基础 数据库的本质 存储引擎 常用操作 登录mysql 创建数据库 使用数据库 查看数据库 创建数据库表 查看表 向表中插入数据 查询表中数据 什么是MySQL 🍒在我们服务器安装完 MySQL 服务之后,经…...
选择合适的帧率和分辨率:优化RTSP流视频抓取(java)
引言 在实时视频流应用中,选择适当的帧率和分辨率对于确保视频流的顺畅播放和图像质量至关重要。本文将向您介绍如何使用Java和JavaCV库中的FFmpegFrameGrabber来从RTSP流中抓取图像,并在抓取时设置帧率和分辨率。 一、配置开发环境 首先,…...
HTTP协议都有哪些方法?
分析&回答 HTTP1.0定义了三种请求方法: GET, POST 和 HEAD方法HTTP1.1新增了五种请求方法:OPTIONS, PUT, DELETE, TRACE 和 CONNECT 方法描述HEAD请求资源的头部信息, 并且这些头部与 HTTP GET 方法请求时返回的一致. 该请求方法的一个使用场景是在…...
数学建模--非整数规划求解的Python实现
目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 #非线性规划模型求解: #我们采用通用的minimize函数来求解 #minimize(f,x,method,bounds,contrains) #f是待求函数 #x是代求的自变量 #method是求解方法 #bounds是取值范围边界 #contrains是约束条件 &q…...
LeetCode 48题: 旋转图像
题目 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]]…...
集成快递物流平台(快递100、快递鸟、闪送)连通多个应用
场景描述: 基于快递物流平台(快递100、快递鸟、闪送等)开放能力,无代码集成快递物流平台与多个应用互连互通。通过Aboter可搭建业务自动化流程,实现多个应用之间的数据连接。 连接器: 快递100快递鸟闪送…...
搭建hadoop集群的常见问题及解决办法
问题一: namenode -format重复初始化 出现问题的原因是重复初始化时会重新生成集群ID,而dn还是原先的集群ID,两者不匹配时无法启动相应的dn进程。 怎么查找问题原因:在logs目录下找到对应节点的.log文件,使用tail -200 文件名来查…...
virtualbox centos 使用NAT模式上网
新安装了centos7之后,发现无法yum,无法ping外网。ping 外网域名无法ping通。 virtualbox的nat 网卡已经打开了。 需要手动打开centos7的网卡(centos7.9) 可以通过 ip addr 命令查看网卡地址 1: lo: <LOOPBACK,UP,LOWER_UP>…...
蓝桥杯官网填空题(梅森素数)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 如果一个数字的所有真因子之和等于自身,则称它为“完全数”或“完美数” 例如: 6 1 2 3 28 1 2 4 7 14早在公元前 300300 多年&am…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
