第15章_锁: (表级锁、页级锁、行锁、悲观锁、乐观锁、全局锁、死锁)
3.2 从数据操作的粒度划分:表级锁、页级锁、行锁
为了提高数据库并发度,每次锁定的数据范围越小越好,理论上每次只锁定当前操作的数据的方案会得到最大的并发度,但管理锁是很耗资源(涉及获取、检查、释放锁等动作)。因此数据库系统需要在高并发响应和系统性能两方面进行平衡,这样就产生了“锁粒度(Lock granularity)”的概念。
对一条记录加锁影响的也只是这条记录而已,我们就说这个锁的粒度比较细;其实一个事务也可以在表级别进行加锁,自然就被称之为表级锁或者表锁,对一个表加锁影响整个表中的记录,我们就说这个锁的粒度比较粗。锁的粒度主要分为表级锁、页级锁和行锁。
1. 表锁(Table Lock)
该锁会锁定整张表,它是MysQL中最基本的锁策略,并不依赖于存储引擎(不管你是MysQL的什么存储引擎对于表锁的策略都是一样的),并且表锁是开销最小的策略(因为粒度比较大)。由于表级锁一次会将整个表锁定,所以可以很好的避免死锁问题。当然,锁的粒度大所带来最大的负面影响就是出现锁资源争用的概率也会最高,导致并发率大打折扣。
① 表级别的S锁、X锁
lock tables t read : InnoDB 会对表 t 加表级别的 S 锁lock tables t write : InnoDB 会对表 t 加表级别的 X 锁
② 意向锁 (intention lock)
-- 事务要获取某些行的 S 锁,必须先获得表的 IS 锁。
SELECT column FROM table ... LOCK IN SHARE MODE;
②意向排他锁(intention exclusive lock, IX):事务有意向对表中的某些行加排他锁(X锁)
-- 事务要获取某些行的 X 锁,必须先获得表的 IX 锁。
SELECT column FROM table ... FOR UPDATE;
即:意向锁是由存储引擎 自己维护的 ,用户无法手动操作意向锁,在为数据行加共享 / 排他锁之前, InooDB 会先获取该数据行 所在数据表的对应意向锁 。
在数据表的场景中, 如果我们给某一行数据加上了排它锁,数据库会自动给更大一级的空间,比如数据页或数据表加上意向锁,告诉其他人这个数据页或数据表已经有人上过排它锁了 ,这样当其他人想要获取数据表排它锁的时候,只需要了解是否有人已经获取了这个数据表的意向排他锁即可。

(2)当前没有其他事务持有teacher表中任意一行的排他锁。
为了检测是否满足第二个条件,事务B必须在确保teacher表不存在任何排他锁的前提下,去检测表中的每一行是否存在排他锁。 很明显这是一个效率很差的做法,但是有了意向锁之后,情况就不一样了。


意向锁不会与行级的共享 / 排他锁互斥!正因为如此,意向锁并不会影响到多个事务对不同数据行加排 他锁时的并发性。(不然我们直接用普通的表锁就行了)
③ 元数据锁(MDL锁)

2. InnoDB中的行锁
行锁(Row Lock)也称为记录锁,顾名思义,就是锁住某一行(某条记录row)。需要的注意的是,MySQL服务器层并没有实现行锁机制,行级锁只在存储引擎层实现。
优点:锁定力度小,发生锁冲突概率低,可以实现的并发度高。
缺点:对于锁的开销比较大,加锁会比较慢,容易出现死锁情况。
InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。
先建立student表
① 记录锁(Record Locks)


- 当一个事务获取了一条记录的S型记录锁后,其他事务也可以继续获取该记录的S型记录锁,但不可 以继续获取X型记录锁;
- 当一个事务获取了一条记录的X型记录锁后,其他事务既不可以继续获取该记录的S型记录锁,也不可以继续获取X型记录锁。
② 间隙锁(Gap Locks)

- session 1 执行select ... for update 语句, 由于id = 5 这一行并不存在, 因此会加上间隙锁(3,8)
- session 2 执行select ... for update 语句, 同样加上间隙锁(3,8), 间隙锁之间不会冲突, 因此这个语句可以执行成功
- session 2 试图插入一行, 被session 1 的间隙锁挡住,进入等待
- session 1 视图插入一行, 被session 2 的间隙锁挡住, 两个session进入死锁
③ 临键锁(Next-Key Locks)
记录锁 + 间隙锁
④ 插入意向锁(Insert Intention Locks)
插入意向锁是在插入一条记录行前,由INSERT操作产生的一种间隙锁。该锁用以表示插入意向,
当多个事务在同一区间(gap)插入位置不同的多条数据时,事务之间不需要互相等待。假设存在两条值分别为4和7的记录,两个不同的事务分别试图插入值为5和6的两条记录,每个事务在获取插入行上独占的(排他)锁前,都会获取(4,7)之间的间隙锁,但是因为数据行之间并不冲突,所以两个事务之间并不会产生冲突(阻塞等待)。
总结来说,插入意向锁的特性可以分成两部分:
- 插入意向锁是一种特殊的间隙锁—―间隙锁可以锁定开区间内的部分记录。
- 插入意向锁之间互不排斥,所以即使多个事务在同一区间插入多条记录,只要记录本身(主键、唯一索引)不冲突,那么事务之间就不会出现冲突等待。
注意,虽然插入意向锁中含有意向锁三个字,但是它并不属于意向锁而属于间隙锁,因为意向锁是表锁而插入意向锁是行锁。
比如,把id值为8的那条记录加一个插入意向锁的示意图如下:比如, 现在T1为id值为8 的记录加了一个gap锁, 然后T2 和 T3 分别想向student表中插入id值分别为4,5的两条记录, 所以现在为id值为8的记录加的锁的示意图就如下所示:
从图中可以看到,由于T1持有gap锁,所以T2和T3需要生成一个插入意向锁的锁结构并且处于等待状态。当T1提交后会把它获取到的锁都释放掉,这样T2和T3就能获取到对应的插入意向锁了(本质上就是把插入意向锁对应锁结构的is_waiting属性改为false),T2和T3之间也并不会相互阻塞,它们可以同时获取到id值为8的插入意向锁,然后执行插入操作。事实上插入意向锁并不会阻止别的事务继续获取该记录上任何类型的锁。
3.3 从对待锁的态度划分:乐观锁、悲观锁
1. 悲观锁(Pessimistic Locking)
2. 乐观锁(Optimistic Locking)
1. 乐观锁的版本号机制
2. 乐观锁的时间戳机制
3. 两种锁的适用场景
- 乐观锁 适合 读操作多 的场景,相对来说写的操作比较少。它的优点在于 程序实现 , 不存在死锁 问题,不过适用场景也会相对乐观,因为它阻止不了除了程序以外的数据库操作。
- 悲观锁 适合 写操作多 的场景,因为写的操作具有 排它性 。采用悲观锁的方式,可以在数据库层面阻止其他事务对该数据的操作权限,防止 读 - 写 和 写 - 写 的冲突。
3.4 其它锁之:全局锁
Flush tables with read lock
3.5 其它锁之:死锁
1. 概念

这时候,事务1在等待事务2释放id=2的行锁,而事务2在等待事务1释放id=1的行锁。 事务1和事务2在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有 两种策略 :
- 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
- 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务(将持有最少行级排他锁的事务进行回滚),让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on ,表示开启这个逻辑。
2. 产生死锁的必要条件
- 两个或者两个以上事务
- 每个事务都已经持有锁并且申请新的锁
- 锁资源同时只能被同一个事务持有或者不兼容
- 事务之间因为持有锁和申请锁导致彼此循环等待
死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。
3.如何处理死锁
- 方式1:等待,直到超时(innodb_lock_wait_timeout=50s)。
即当两个事务互相等待时,当一个事务等待时间超过设置的阈值时,就将其回滚,另外事务继续进行。这种方法简单有效,在innodb中,参数innodb_lock_wait_timeout用来设置超时时间。
缺点:对于在线服务来说,这个等待时间往往是无法接受的。
那将此值修改短一些,比如1s,0.1s是否合适?不合适,容易误伤到普通的锁等待。
- 方式2:使用死锁检测进行死锁处理
方式1检测死锁太过被动,innodb还提供了wait-for graph算法来主动进行死锁检测,每当加锁请求无法立即满足需要并进入等待时,wait-for graph算法都会被触发。
基于这两个信息, 可以绘制wait-for graph(等待图)
死锁检测的原理是构建一个以事务为顶点, 锁为边的有向图,判断有向图是否存在环, 存在即有锁
一旦检测到回路、有死锁,这时候InnoDB存储引擎会选择回滚undo量最小的事务(将持有最少行级排他锁的事务进行回滚),让其他事务继续执行(innodb_deadlock_detect=on `表示开启这个逻辑)。
缺点:每个新的被阻塞的线程,都要判断是不是由于自己的加入导致了死锁,这个操作时间复杂度是o(n)。如果100个并发线程同时更新同一行,意味着要检测100*100 = 1万次,1万个线程就会有1千万次检测。
如何解决?
- 方式1:关闭死锁检测,但意味着可能会出现大量的超时,会导致业务有损。
- 方式2:控制并发访问的数量。比如在中间件中实现对于相同行的更新,在进入引擎之前排队,这样在InnoD内部就不会有大量的死锁检测工作。
进一步的思路:
可以考虑通过将一行改成逻辑上的多行来减少锁冲突. 比如, 连锁超市账户总额的记录, 可以考虑放到多条记录上, 账户总额等于这多个记录的值的总和.
4.如何避免死锁
-
合理设计索引,使业务sQL尽可能通过索引定位更少的行,减少锁竞争。
-
调整业务逻辑sQL执行顺序,避免update/delete长时间持有锁的sQL在事务前面。
-
避免大事务,尽量将大事务拆成多个小事务来处理,小事务缩短锁定资源的时间,发生锁冲突的几率也更小。
-
在并发比较高的系统中,不要显式加锁,特别是是在事务里显式加锁。如select ... for update语句,如果是在事务里运行了start transaction或设置了autocommit等于o,那么就会锁定所查找到的记录。
-
降低隔离级别。如果业务允许,将隔离级别调低也是较好的选择,比如将隔离级别从RR调整为Rc,可以避免掉很多因为gap锁造成的死锁。
相关文章:

第15章_锁: (表级锁、页级锁、行锁、悲观锁、乐观锁、全局锁、死锁)
3.2 从数据操作的粒度划分:表级锁、页级锁、行锁 为了提高数据库并发度,每次锁定的数据范围越小越好,理论上每次只锁定当前操作的数据的方案会得到最大的并发度,但管理锁是很耗资源(涉及获取、检查、释放锁等动作)。因…...
python音频转文字调用baidu
python音频转文字调用的是百度智能云的接口,因业务需求会涉及比较多数字,所以这里做了数字的处理,可根据自己的需求修改。 from flask import Flask, request, jsonify import requestsfrom flask_limiter import Limiterapp Flask(__name_…...

靶场溯源第二题
关卡描述:1. 网站后台登陆地址是多少?(相对路径) 首先这种确定的网站访问的都是http或者https协议,搜索http看看。关于http的就这两个信息,然后172.16.60.199出现最多,先过滤这个ip看看 这个很…...

mysql 的增删改查以及模糊查询、字符集语句的使用
一、mysql启动与登陆(windows下的mysql操作) 1.启动mysql服务 net start mysql81 2.登陆mysql mysql -uroot -p 3.查看所有数据库 show databases; 二、模糊查询(like) 1. _代表查询单个 2.%代表查询多个 3.查找所有含有schema的数据库;…...
Python Django框架中文教程:学习简单、灵活、高效的Web应用程序框架
概述: Python Django是一种流行的Web应用程序框架,被广泛应用于开发高效、可扩展的网站和Web应用程序。Django以其简单、灵活和高效而受到开发者们的青睐。它提供了强大的工具和功能,使开发过程更加容易和高效。 Django的主要目标是帮助开发者快速构建…...

Docker认识即安装
Docker及相关概念 Docker和虚拟机方式的区别:虚拟机技术是虚拟出一套硬件后,在其上运行一个完整的操作系统,在该系统上在运行所需应用进程;而容器内的应用进程是直接运行于宿主的内核,容器内没有自己的内核࿰…...

chrome 谷歌浏览器 导出插件拓展和导入插件拓展
给同事部署 微软 RPA时,需要用到对应的chrome浏览器插件;谷歌浏览器没有外网是不能直接下载拓展弄了半小时后才弄好,竟发现没有现成的教程,遂补充; 如何打包导出 谷歌浏览器 地址栏敲 chrome://extensions/在对应的地…...

fastjson漏洞批量检测工具
JsonExp 简介 版本:1.3.5 1. 根据现有payload,检测目标是否存在fastjson或jackson漏洞(工具仅用于检测漏洞)2. 若存在漏洞,可根据对应payload进行后渗透利用3. 若出现新的漏洞时,可将最新的payload新增至…...

Vue进阶(六十七)页面刷新路由传参丢失问题分析及解决
文章目录 一、前言二、问题排查三、延伸阅读3.1 Apache服务器access_log日志3.2 浏览器的常见User Agent 各字段的解释 一、前言 问题描述:Vue项目上线后,在IE浏览器上,从A页面跳转至B页面,B页面通过data中接收来自A页面的参数信…...

阿里云ubuntu服务器搭建ftp服务器
阿里云ubuntu服务器搭建ftp服务器 服务器环境安装步骤一.创建用户二.安装 vsftp三 配置vsftp四.配置阿里云安全组 服务器环境 阿里云上的云服务器,操作系统为 ubuntu20.04。 安装步骤 一.创建用户 为什么需要创建用户? 这里的用户,指的是…...

03 卷积操作图片
一、均值滤波 # 卷积操作 # 输入图片. input, 必须是4维tensor(图片数量, 图片高度, 图片的宽度, 图片的通道数) # filters, 卷积核, 必须是4维的tensor(卷积核的高度和宽度, 输入图片的通道数, 卷积核的个数) # strides, 步长, 卷积核在图片的各个维度上的移动步长, (1, 1, 1,…...

软考:中级软件设计师:程序语言基础:表达式,标准分类,法律法规,程序语言特点,函数传值传址
软考:中级软件设计师:程序语言基础:表达式 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都…...

Java“牵手”1688商品详情数据,1688商品详情API接口,1688API接口申请指南
1688平台商品详情接口是开放平台提供的一种API接口,通过调用API接口,开发者可以获取1688商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片等详细信息 。 获取商品详情接口API是一种用于获取电商平台上商品详情数据的接口,通过…...

stable diffusion实践操作-批次出图
系列文章目录 stable diffusion实践操作 文章目录 系列文章目录前言一、批次出图介绍1.1 webUI设置1.2 参数介绍 二、批次出图使用2.1 如何设置2.1 效果展示 总结 前言 本章主要介绍SD批次出图。 想要一次产生多张图片的时候使用。 一、批次出图介绍 1.1 webUI设置 1.2 参数…...
LeetCode热题100 【cpp】题解(一)哈希表和双指针
文章目录 1. 两数之和49. 字母异位词分组128. 最长连续序列283. 移动零11. 盛最多水的容器15. 三数之和42. 接雨水 题单链接: LeetCode 热题 100 1. 两数之和 leetcode题目链接 题解1:暴力枚举 时间复杂度: O ( n 2 ) O(n^2) O(n2) class …...
Python爬虫常见代理池实现和优化
在这篇文章中,我们将探讨Python爬虫中常见的代理池实现和优化方法。在爬取网站数据时,为防止被目标网站封禁IP,我们通常会使用代理IP进行访问。一个高效且稳定的代理池可以帮助我们轻松应对各种反爬策略。 首先,我们来了解一下…...
前端面试的话术集锦第 3 篇:进阶篇上
这是记录前端面试的话术集锦第三篇博文——进阶篇上,我会不断更新前端面试话术的博文。❗❗❗ 1 谈谈变量提升 当执⾏JS代码时,会⽣成执⾏环境,只要代码不是写在函数中的,就是在全局执⾏环境中,函数中的代码会产⽣函数执⾏环境,只此两种执⾏环境。 b() // call b conso…...

【文字到语音的论文总结】
1.文字到语音的整个过程 文字到语音的一般整体结构 主要是下面这个流程,每个网络可能会把其中两者或是三者融合在一起来; 长度不同的问题 生成的语音可能和文字的长度并不一样,因此需要解决这个问题 Tactron使用的是交叉注意力的方式解…...

E. Data Structures Fan(思维 + 异或前缀和)
Problem - E - Codeforces 给你一个整数数组 a1, a2,..., an,以及一个由 n 个字符组成的二进制字符串† s。 Augustin 是一个数据结构的爱好者。因此,他请你实现一个可以回答 q 个查询的数据结构。这里有两种类型的查询: Plain Text "1…...

初学python爬虫学习笔记——爬取网页中小说标题
初学python爬虫学习笔记——爬取网页中小说标题 一、要爬取的网站小说如下图 二、打开网页的“检查”,查看html页面 发现每个标题是列表下的一个个超链接,从183.html到869.html 可以使用for循环依次得到: x range(183,600) for i in x:pr…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...