基于uwb和IMU融合的三维空间定位算法matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
5.算法完整程序工程
1.算法运行效果图预览





2.算法运行软件版本
matlab2022a
3.部分核心程序
..........................................................................kkk = 0;
for EbN0 = EbN0_subkkkkkk = kkk + 1;for jj1 = 1:Tag_Numjj1rng(jj1);for jj = 1:num_bits%TAG to BS1delay_1 = round(time_bs_tag(1,jj1)/ts);xx1 = zeros(1,delay_1);%传播时延delay_1_1(jj,:) = [xx1 sig(1:end-length(xx1))];%UWBh_4 = uwb_channel(dist_bs_tag(1,jj1)); %信号经过信道conv_data1 = conv(delay_1_1(jj,:),h_4); UWB_chan1(jj,:) = conv_data1(1:length(sig));%TAG to BS2delay_2 = round(time_bs_tag(2,jj1)/ts);xx2 = zeros(1,delay_2);%传播时延delay_2_1(jj,:) = [xx2 sig(1:end-length(xx2))];h_2 = uwb_channel(dist_bs_tag(2,jj1));conv_data2 = conv(delay_2_1(jj,:),h_2);UWB_chan2(jj,:) = conv_data2(1:length(sig));%TAG to BS3delay_3 = round(time_bs_tag(3,jj1)/ts);xx3 = zeros(1,delay_3);%传播时延delay_3_1(jj,:) = [xx3 sig(1:end-length(xx3))];h_3 = uwb_channel(dist_bs_tag(3,jj1));conv_data3 = conv(delay_3_1(jj,:),h_3);UWB_chan3(jj,:) = conv_data3(1:length(sig));%TAG to BS4delay_4 = round(time_bs_tag(4,jj1)/ts);xx4 = zeros(1,delay_4);%传播时延delay_4_1(jj,:) = [xx4 sig(1:end-length(xx4))];h_4 = uwb_channel(dist_bs_tag(4,jj1));conv_data4 = conv(delay_4_1(jj,:), h_4);UWB_chan4(jj,:) = conv_data4(1:length(sig)); endfor jj = 1:num_bitsUWB_chan1n(jj,:) = awgn(UWB_chan1(jj,:)/max(UWB_chan1(jj,:)),EbN0,'measured');UWB_chan2n(jj,:) = awgn(UWB_chan2(jj,:)/max(UWB_chan2(jj,:)),EbN0,'measured');UWB_chan3n(jj,:) = awgn(UWB_chan3(jj,:)/max(UWB_chan3(jj,:)),EbN0,'measured');UWB_chan4n(jj,:) = awgn(UWB_chan4(jj,:)/max(UWB_chan4(jj,:)),EbN0,'measured');end%自适应前沿检测%自适应前沿检测..........................................................end
endP_est0 = [x_est0',y_est0',z_est0'];
P_est1 = [x_est1',y_est1',z_est1'];figure;
plot(toa_error0,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);hold on
title('估计误差')axis([0,Tag_Num,0,2]);
ylabel('cm');figure
axis([0 10 0 10 0 10]);
for i=1:BS_Num plot3(BS_pos(i,1),BS_pos(i,2),BS_pos(i,3),'ko','MarkerFace','y','MarkerSize',8);hold on
end
hold on
for i=1:Tag_Num
plot3(Tag(i,1),Tag(i,2),Tag(i,3),'k^','MarkerFace','b','MarkerSize',6);
hold on
plot3(x_est1(i),y_est1(i),z_est1(i),'ks','MarkerFace','r','MarkerSize',6);
hold on
endgrid on
xlabel('cm');
ylabel('cm');
zlabel('cm');save R.mat toa_error1
36_003m
4.算法理论概述
基于UWB和IMU融合的三维空间定位算法是一个结合了无线脉冲波(UWB)和惯性测量单元(IMU)各自优势的定位方法。UWB通过测量信号的传输时间来计算距离,具有精度高、抗干扰能力强等优点,但易受多径效应和环境噪声的影响。IMU则通过测量加速度和角速度来计算姿态和位置信息,具有实时性和动态性强的特点,但受限于加速度的测量误差和漂移。
通过将这两种技术进行融合,可以充分利用它们的优点来提高定位精度和稳定性。具体来说,UWB可以提供高精度的距离信息,用于计算目标的位置和姿态,而IMU可以提供实时的加速度和角速度信息,用于修正UWB的测量误差和漂移,同时提高系统的响应速度和鲁棒性。
下面介绍一种基于UWB和IMU融合的三维空间定位算法,其原理和数学公式如下:
- UWB定位
UWB采用双基站的定位方式,假设已知两个基站的位置坐标为(x1, y1, z1)和(x2, y2, z2),目标的位置坐标为(x, y, z),则可以通过以下公式计算目标到两个基站的距离差:
Δd = (x2-x1)² + (y2-y1)² + (z2-z1)² - (x-x1)² - (y-y1)² - (z-z1)²
其中,(x, y, z)为目标的位置坐标,(x1, y1, z1)和(x2, y2, z2)分别为两个基站的位置坐标。根据距离差和两个基站的坐标,可以列出两个方程,求解得到目标的位置坐标(x, y, z)。
IMU辅助
IMU可以提供实时的加速度和角速度信息,用于修正UWB的测量误差和漂移。具体来说,IMU可以提供一个加速度传感器和一个陀螺仪,分别测量加速度和角速度信息。通过对这些信息进行积分和平滑处理,可以得到目标的姿态和位置信息。
在融合过程中,可以将IMU的加速度和角速度信息作为UWB的辅助数据,对UWB的测量结果进行修正。具体来说,可以将IMU的加速度信息用于计算目标的速度和加速度,对UWB的距离测量结果进行修正,同时利用IMU的角速度信息对UWB的角度测量结果进行修正。这样可以使系统具有更高的精度和鲁棒性。
融合算法
基于UWB和IMU融合的三维空间定位算法主要包括两个阶段:数据采集阶段和数据融合阶段。在数据采集阶段,通过UWB和IMU采集目标的位置、速度、加速度、角速度等信息;在数据融合阶段,将采集到的数据进行融合处理,得到目标的最终位置、速度、加速度、角速度等信息。
解算过程可以根据需要采用最小二乘法、卡尔曼滤波等方法进行优化求解。例如,采用卡尔曼滤波算法可以将UWB和IMU的数据进行融合处理,得到更为精确的目标位置、速度、加速度、角速度等信息。具体实现过程如下:
(1)初始化状态矩阵和控制矩阵;
(2)通过UWB和IMU采集数据;
(3)利用采集到的数据计算状态矩阵和控制矩阵;
(4)根据卡尔曼滤波公式对状态矩阵和控制矩阵进行迭代计算;
(5)根据迭代结果计算目标的最终位置、速度、加速度、角速度等信息。
算法优点
基于UWB和IMU融合的三维空间定位算法具有以下优点:
(1)精度高:通过UWB和IMU的融合,可以减小环境噪声对定位精度的影响,提高算法的鲁棒性;
(2)实时性强:IMU的加速度和角速度信息可以提供实时的姿态和位置信息,对UWB的距离测量结果进行修正,缩短了系统的响应时间;
(3)可靠性高:通过数据融合技术处理多传感器数据,可以减小单一传感器的故障对系统性能的影响;
(4)扩展性强:该算法可以适用于多种场景,例如机器人定位、无人驾驶等。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:
基于uwb和IMU融合的三维空间定位算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..........................................................................kkk 0; for E…...
Visual Studio 2019下使用C++与Python进行混合编程——环境配置与C++调用Python API接口
前言 在vs2019下使用C与Python进行混合编程,在根源上讲,Python 本身就是一个C库,那么这里使用其中最简单的一种方法是把Python的C API来嵌入C项目中,来实现混合编程。当前的环境是,win10,IDE是vs2019,python版本是3.9,…...
STM32F4X RTC
STM32F4X RTC 什么是RTCSTM32F4X RTCSTM32F4X RTC框图STM32F4X RTC计数频率STM32F4X RTC日历STM32F4X RTC闹钟 STM32F4X RTC例程 什么是RTC RTC全程叫Real-Time Clock实时时钟,是MCU中一个用来计时的模块。RTC的一个主要作用是用来显示实时时间,就像日常…...
[git] 如何克隆仓库,进行项目撰写,并绑定自己的远程仓库
摘要:删除.git文件,才可重新绑定远程仓库。 具体步骤: 文件夹右键,进入”Git Bash Here“执行命令 1. 执行 ”git clone 仓库地址“,克隆仓库 2. 在生成的仓库中,删除 .git 文件 3. git init 初始化仓库…...
【C++】模拟实现二叉搜索树的增删查改功能
个人主页:🍝在肯德基吃麻辣烫 我的gitee:C仓库 个人专栏:C专栏 文章目录 一、二叉搜索树的Insert操作(非递归)分析过程代码求解 二、二叉搜索树的Erase操作(非递归)分析过程代码求解…...
Yolov8-pose关键点检测:模型轻量化创新 | ScConv结合c2f | CVPR2023
💡💡💡本文解决什么问题:ScConv(空间和通道重建卷积),一个即插即用的架构单元,可以可以直接用来替代各种卷积神经网络中的标准卷积。 ScConv | GFLOPs从9.6降低至9,参数量从6482kb降低至6479kb Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_637742…...
【洛谷 P1060】[NOIP2006 普及组] 开心的金明 题解(动态规划+01背包)
[NOIP2006 普及组] 开心的金明 题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说…...
什么是CI/CD:持续集成与持续交付?(InsCode AI 创作助手)
在现代软件开发领域,CICD(Continuous Integration and Continuous Delivery)是一种关键性的开发实践,它有助于提高软件交付的质量和效率。本文将深入探讨CICD的定义、原理和重要性,以及如何在项目中实施CICD流程。 什…...
redis 高可用
Redis 高可用 在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供…...
什么样的词条可以创建维基百科?
维基百科在国内用得比较少,有一些特殊原因,维基百科的控制权海外,目前维基百科和谷歌是一样的,在国内是无法正常访问的。但做海外推广的朋友都是知道维基百科的,小马识途营销顾问认为它在世界互联网领域的地位…...
poll epoll初学习
正是select这些缺点,才有了poll 1.I/O多路转接之poll 2.I/O多路转接之epoll 其中的struct epoll_event:...
BMS电池管理系统——电芯需求数据(三)
BMS电池管理系统 文章目录 BMS电池管理系统前言一、有什么基础数据二、基础数据分析1.充放电的截至电压2.SOC-OCV关系表3.充放电电流限制表4.充放电容量特性5.自放电率 总结 前言 在新能源产业中电芯的开发也占有很大部分,下面我们就来看一下电芯的需求数据有哪些 …...
【uniapp】关于小程序输入框聚焦、失焦(输入法占位)的问题
聊天小程序,界面带有输入框,当输入框中聚焦后,底部自动谈起输入法。此时输入框也要随之出现在输入法上方。默认情况下,输入框此时会被输入法覆盖掉。 以下是亲自实践,解决这个问题的方法: 一、小程序大概…...
MySQL的故事——创建高性能的索引
创建高性能的索引 文章目录 创建高性能的索引一、索引基础二、索引的优点三、高性能的索引策略 一、索引基础 要理解MySQL中索引是如何工作的,最简单的方法就是去看看一本书的“索引 ”部分:如果在一本书中找到某个特定主题,一般会先看书的“…...
渗透测试漏洞原理之---【组件安全】
文章目录 1、组件安全概述1.1、常见组件1.1.1、操作系统1.1.2、Web容器1.1.3、中间件1.1.4、数据库1.1.5、开发框架1.1.6、OA系统1.1.7、其他组件 1.2、漏洞复现1.2.1 漏洞复现模板1.2.3、漏洞名称参考1.2.4、漏洞库 2、Apache2.1、Apache HTTPD2.2、Apache Shiro2.3、Apache T…...
uni-app集成mui-player
uni-app集成mui-player,仅说明集成方法,mui-player 相关配置请查看其官网 准备 在uniapp项目根目录新建hybrid目录在hybrid目录下新建html目录在html目录中新建css、js、img等目录,用于存放相关文件 集成 静态webview 在pages目录下新建v…...
力扣(LeetCode)算法_C++—— 两个数组的交集
给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 示例 1: 输入:nums1 [1,2,2,1], nums2 [2,2] 输出:[2] 示例 2: 输入:nums1 …...
异步编程 - 12 异步、基于事件驱动的网络编程框架 Netty
文章目录 Netty概述Netty中的一些概念Netty的线程模型Netty Server端Netty Netty 端 TCP半包与粘包问题基于Netty与CompletableFuture实现RPC异步调用 Netty概述 Netty是一个异步、基于事件驱动的网络应用程序框架,其对Java NIO进行了封装,大大简化了TC…...
STM32 Nucleo-144开发板开箱bring-up
文章目录 1. 开篇2. 开发环境搭建2.1 下载官方例程2.2 ST-Link安装 3. STM32F446ZE demo工程3.1 STM32F446ZE简介3.2 跑个demo试一试 1. 开篇 最近做项目,用到STM32F446ZET6这款MCU,为了赶进度,前期软件需要提前开发,于是在某宝买…...
计算机毕业设计 基于SSM的问卷调查管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
