Mysql锁
文章目录
- 1. 概述
- 2. 分类
- 3. 全局锁
- 4. 表级锁
- 5. 行级锁
1. 概述
锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。
2. 分类
mysql中的锁,按照锁的粒度分,分为一下三类:
- 全局锁:锁定数据库中的所有表
- 表级锁:每次操作锁住整张表
- 行级锁:每次操作锁住对应的行数据
3. 全局锁
全局锁是对整个数据库实例加锁,加锁后整个实例处于只读状态,后续的DML的写语句,DDL语句,已经更新的事务操作提交语句都将被阻塞。其典型的应用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。
- 加全局锁
flush table with read lock;
- 使用mysqldump工具对数据库进行备份
mysqldump -uroot -p1234 itcast(备份的数据库名) > itcast.sql
- 解锁
unlock tables;
- 通过全局锁实现数据库备份操作
- 创建三个终端,来模拟三个数据库连接
2. 加全局锁
flush table with read lock;
3. 执行数据库备份(在window命令行下)
mysqldump -h127.0.0.1 -uroot -p123456 mysql_learn > /Users/jackchai/Desktop/Self-study-notes/test/db011.sql
4. 释放锁
unlock tables;
数据库中加入全局锁,是一个比较重的操作,存在以下问题:
- 如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆
- 如果在主库上备份,那么备份期间从库不能执行主库同步过来的二进制日志(binlog),会导致主从延迟
在innodb存储引擎中,我们可以在备份时加上参数--single-transaction参数来完成不加锁的一致性备份
mysqldump --single-transaction -uroot -p123456 itcast > itcast.sql
4. 表级锁
表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyIsam、innoDB、BDB等存储引擎中。对于表级锁,主要分为三类:
- 表锁
- 元数据锁(meta data lock,MDL)
- 意向锁
- 表锁
对于表锁,分为两类:
- 表共享读锁(read lock)
- 表独占写锁 (write lock)
语法:
- 加锁:lock tables 表名… read/write
- 释放锁:unlock tables / 客户端断开连接
- 测试
一个客户端加读锁,所有客户端可读数据库(但不能更新数据库)
一个客户端加表锁,该客户端可读可写,其它客户端不能进行任何操作
读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其它客户的读,又会阻塞其他客户端的写
- 元数据锁(MDL)
MDL加锁过程是系统自动控制的,无需显示使用,在访问一张表的时候会自动加上。MDL锁主要作用是维护元数据(表结构)的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。
在Mysql 5.5 中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享),当对表结构进行变更操作时,加MDL写锁(排他)
对应SQL | 锁类型 | 说明 |
---|---|---|
lock tables xxx read/write | shared_read_only/shared_no_read_write | |
select、select…lock in share mode | shared_read | 与shared_read、shared_write兼容,与Exclusive互斥 |
insert、update、delete、select…for update | shared_write | 与shared_read、shared_write兼容,与Exclusive互斥 |
alter table… | exclusive | 与其他的MDL互斥 |
- 案例
一个数据库连接加上shared_read锁或shared_write和其他连接是共享的
一个连接加上shared_read/shared_write时另一个连接不能加上exclusive锁
查看元数据锁
select object_type, object_schema,object_name,lock_type,lock_duration from performance_schema.metadata_locks
- 意向锁
为了避免DML在执行时,加的行锁与表锁冲突,在innoDB引入了意向锁,使用表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。(加入行锁的时候会给表加个意向锁,加表锁的时候会判断意向锁和表锁是否兼容来决定是否加表锁)
意向共享锁(IS):由语句select…lock in share mode添加
意向排他锁(IX):由insert、update、delete、select… for update添加。
通过以下sql,查看意向锁及行锁的加锁情况
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_locks;
- 案例
加IS锁
加IX锁
5. 行级锁
行级锁,每次操作锁住对应的数据行。锁定粒度最小,发生冲突的概率最低,并发度最高。应用在innoDB存储引擎中。InnoDB的数据时基于索引组织的,行锁时通过对索引上的索引项来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:
- 行锁(Record Lock):锁定单个记录的锁,防止其他事务对此进行update和delete。在RC、RR隔离级别下支持。
- 间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事务在这个间隙进行insert,产生幻读。在RR隔离级别下支持。
- 临键锁(Next-key Lock):行锁和间隙锁的组合,同时锁住数据,并锁住数据前面的间隙GAP。在RR隔离级别下支持。
- 行锁
innoDB存储引擎实现了一下两种类型的行锁:
- 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
- 排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。
SQL | 行锁类型 | 说明 |
---|---|---|
insert | 排他锁 | 自动加锁 |
update | 排他锁 | 自动加锁 |
delete | 排他锁 | 自动加锁 |
select | 不加任何锁 | |
select lock in share mode | 共享锁 | 需要手动在select之后加lock in share mode |
select for update | 排他锁 | 需要手动在select之后加for update |
默认情况下,innoDB在Repeatable read 事务隔离级别运行,innoDB使用next-key锁进行搜索和索引扫描,以防止幻读
- 针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁
- innoDB的行锁时针对索引加的锁,不通过索引条件检索数据,那么innoDB将对表中的所有记录加锁,此时就会升级为表锁
通过一下SQL,查看意向锁及行锁的加锁情况
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_locks;
- 间隙锁/临键锁
默认情况下,innoDB在Repeatable raed事务隔离级别,InnoDB使用next-key锁进行搜索和索引扫描,以防止幻读
- 索引上的等值查询(唯一索引),给不存在的记录加锁时,优化为间隙锁
- 索引上的等值查询(普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock退化为间隙锁
- 索引上的范围查询(唯一索引,会访问到不满足条件的第一个值为止
注意:间隙锁唯一的目的是防止其他事务插入间隙,间隙锁可以共存,一个事务采用的间隙锁不回阻止另一个事务在同一个间隙上采用间隙锁
相关文章:

Mysql锁
文章目录 1. 概述2. 分类3. 全局锁4. 表级锁5. 行级锁 1. 概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并…...

Kubernetes(k8s)安装NFS动态供给存储类并安装KubeSphere
Kubernetes安装NFS动态供给存储类并安装KubeSphere KubeSphere介绍环境准备KubeSphereNFS动态供给 安装NFS动态供给搭建NFS下载动态供给驱动修改驱动文件安装动态供给 安装KubeSphere下载KubeSphere的yaml资源清单文件安装KubeSphere 使用KubeSphere部署应用创建项目部署MySQL …...
机器学习笔记 - 【机器学习案例】基于KerasCV的预训练模型自定义多头+多标签预测
一、KerasCV KerasCV 是一个模块化计算机视觉组件库,可与 TensorFlow、JAX 或 PyTorch 原生配合使用。这些模型、层、指标、回调等基于Keras Core构建,可以在任何框架中进行训练和序列化,并在另一个框架中重复使用,而无需进行昂贵的迁 KerasCV 可以理解为 Keras API 的水平…...
Linux Debian常用70条经典运维命令和使用案例
一、前言 今天分享一些Linux Debian运维方法以及常用命令 二、运维方法 Linux Debian系统的运维涉及到各种任务,包括系统安装、配置、更新和维护,以及故障排查和性能优化等。下面是一些常用的运维命令: 1、以下是部分命令注释 1. apt-ge…...
【涵子来信】——步入中学,日积跬步,以致千里
大家好: 我是涵子,好久没有发文,今天发个文。 如果说,给你一次再入中学的机会,你会怎么想?对于刚刚步入中学的我,目前状况尚好,洛谷最近刷得紧,看看我的洛谷。 好的&…...
【sgCreateAPI】自定义小工具:敏捷开发→自动化生成API接口脚本(接口代码生成工具)
<template><div :class"$options.name"><div class"sg-head">接口代码生成工具</div><div class"sg-container"><div class"sg-start "><div style"margin-bottom: 10px;">接口地…...

数据库相关基础知识
第一章 概念 1、数据:描述事物的符号记录称为数据。特点:数据和关于数据的解释不可分。 2、数据库:长期存储在计算机内、有组织、可共享的大量的数据的集合。数据库中的数据按照一定的数据模型组织、描述和存储,具有较小的冗余度、…...

LeetCode刷题笔记【23】:贪心算法专题-1(分发饼干、摆动序列、最大子序和)
文章目录 前置知识贪心算法的本质什么时候用贪心算法?什么时候不能用贪心?贪心算法的解题步骤 455.分发饼干题目描述解题思路代码 376. 摆动序列题目描述解题思路代码 53. 最大子序和题目描述暴力解法动态规划贪心算法 总结 前置知识 贪心算法的本质 贪心的本质是选择每一阶…...

C++算法 —— 分治(2)归并
文章目录 1、排序数组2、数组中的逆序对3、计算右侧小于当前元素的个数4、翻转对 本篇前提条件是已学会归并排序 1、排序数组 912. 排序数组 排序数组也可以用归并排序来做。 vector<int> tmp;//写成全局是因为如果在每一次小的排序中都创建一次,更消耗时间和…...

Hadoop YARN HA 集群安装部署详细图文教程
目录 一、YARN 集群角色、部署规划 1.1 集群角色--概述 1.2 集群角色--ResourceManager(RM) 1.3 集群角色--NodeManager(NM) 1.4 HA 集群部署规划 二、YARN RM 重启机制 2.1 概述 2.2 演示 2.2.1 不开启 RM 重启机制…...
BBS+商城项目的数据库表设计
本文章是对于BBS商城项目的数据库的初步设计,仅供参考! -- 创建用户表 CREATE TABLE Users (id bigint(20) PRIMARY KEY COMMENT 用户ID,username varchar(255) NOT NULL COMMENT 用户名,password varchar(255) NOT NULL COMMENT 密码,status int(1) DE…...
如何使用Savitzky-Golay滤波器进行轨迹平滑
一、Savitzky-Golay滤波器介绍 Savitzky-Golay滤波器是一种数字滤波器,用于平滑数据,特别是在信号处理中。它基于最小二乘法的思想,通过拟合数据到一个滑动窗口内的低阶多项式来实现平滑。这种滤波器的优点是它可以保留数据的高频信息&#…...

Nomad系列-Nomad网络模式
系列文章 Nomad 系列文章 概述 Nomad 的网络和 Docker 的也有很大不同, 和 K8s 的有很大不同. 另外, Nomad 不同版本(Nomad 1.3 版本前后)或是否集成 Consul 及 CNI 等不同组件也会导致网络模式各不相同. 本文详细梳理一下 Nomad 的主要几种网络模式 在Nomad 1.3发布之前&a…...

OpenCV项目开发实战--实现面部情绪识别对情绪进行识别和分类及详细讲解及完整代码实现
文末提供免费的完整代码下载链接 面部情绪识别(FER)是指根据面部表情对人类情绪进行识别和分类的过程。通过分析面部特征和模式,机器可以对一个人的情绪状态做出有根据的猜测。面部识别的这个子领域是高度跨学科的,借鉴了计算机视觉、机器学习和心理学的见解。 在这篇研究…...

Validate表单组件的封装
之前一直是直接去使用别人现成的组件库,也没有具体去了解人家的组件是怎么封装的,造轮子才会更好地提高自己,所以尝试开始从封装Form表单组件开始 一:组件需求分析 本次封装组件,主要是摸索封装组件的流程,…...

企业架构LNMP学习笔记32
企业架构LB-服务器的负载均衡之LVS实现: 学习目标和内容 1)能够了解LVS的工作方式; 2)能够安装和配置LVS负载均衡; 3)能够了解LVS-NAT的配置方式; 4)能够了解LVS-DR的配置方式&…...
基于Jetty9的Geoserver配置https证书
1.环境准备 由于Geoserver自带的jetty版本不具备https模块,所以需要下载完整版本jetty。这里需要先查看本地geoserver对应的jetty版本,进入geoserver安装目录,执行如下命令。 java -jar start.jar --version Jetty Server Classpath: -----…...
企业互联网暴露面未知资产梳理
一、互联网暴露面梳理的重要性 当前,互联网新技术的产生推动着各种网络应用的蓬勃发展,网络安全威胁逐渐蔓延到各种新兴场景中,揭示着网络安全威胁不断加速泛化。当前网络存在着许多资产,这些资产关系到企业内部的安全情况&#…...

【动态规划刷题 12】等差数列划分 最长湍流子数组
139. 单词拆分 链接: 139. 单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。 注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。 示例 1: 输入: …...
react-redux 的使用
react-redux React Redux 是 Redux 的官方 React UI 绑定库。它使得你的 React 组件能够从 Redux store 中读取到数据,并且你可以通过dispatch actions去更新 store 中的 state 安装 npm install --save react-reduxProvider React Redux 包含一个 <Provider…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...