当前位置: 首页 > news >正文

AssertionError: 618 columns passed, passed data had 508 columns【已解决】

问题描述

程序中断,报错如下AssertionError: 618 columns passed, passed data had 508 columns

Exception has occurred: ValueError
618 columns passed, passed data had 508 columns
AssertionError: 618 columns passed, passed data had 508 columnsThe above exception was the direct cause of the following exception:File "E:\matlab\CHB-MIT-DATA\epilepsy_eeg_classification\preprocessing.py", line 117, in eeg_preprocessingres = pd.DataFrame(res, columns=column_names)File "E:\matlab\CHB-MIT-DATA\epilepsy_eeg_classification\preprocessing.py", line 334, in <module>res = eeg_preprocessing(file, seizures)
ValueError: 618 columns passed, passed data had 508 columns

 terminal报错如下:

Backend Qt5Agg is interactive backend. Turning interactive mode on.

 

弯路

numpy1.19.4改为了numpy1.21.6

pip list: numpy1.21.6

conda list: numpy1.20.1

发现,报错仍旧一样,没有任何改变。

我的怀疑是数据里面有nan值,而程序中并没有处理的方法,是丢弃是补充为0还是补充为平均值。因为如果丢弃的话。

我发现numpy版本不对,卸载的时候,报错说:

PackageNotInstalledError: Package is not installed in prefix

于是我使用

conda udate numpy

报错如下:

(base) PS E:\matlab> conda update numpy
Collecting package metadata (repodata.json): done
Solving environment: -
The environment is inconsistent, please check the package plan carefully
The following packages are causing the inconsistency:- defaults/win-64::anaconda==custom=py37_1- https://repo.anaconda.com/pkgs/main/win-64::bkcharts==0.2=py37_0- https://repo.anaconda.com/pkgs/main/win-64::blaze==0.11.3=py37_0- https://repo.anaconda.com/pkgs/main/win-64::bokeh==0.13.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::dask==0.19.1=py37_0- https://repo.anaconda.com/pkgs/main/win-64::numpydoc==0.8.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::odo==0.5.1=py37_0- https://repo.anaconda.com/pkgs/main/win-64::seaborn==0.9.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::sphinx==1.7.9=py37_0- https://repo.anaconda.com/pkgs/main/win-64::spyder==3.3.1=py37_1- https://repo.anaconda.com/pkgs/main/win-64::statsmodels==0.9.0=py37h452e1ab_0- defaults/win-64::_anaconda_depends==5.3.1=py37_0
failedCondaMemoryError: The conda process ran out of memory. Increase system memory and/or try again.

有人说可以直接退到base环境更新conda。

(base) PS E:\matlab> conda update --name base conda
Collecting package metadata (repodata.json): done
Solving environment: |
The environment is inconsistent, please check the package plan carefully
The following packages are causing the inconsistency:- defaults/win-64::anaconda==custom=py37_1- https://repo.anaconda.com/pkgs/main/win-64::bkcharts==0.2=py37_0- https://repo.anaconda.com/pkgs/main/win-64::blaze==0.11.3=py37_0- https://repo.anaconda.com/pkgs/main/win-64::bokeh==0.13.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::dask==0.19.1=py37_0- https://repo.anaconda.com/pkgs/main/win-64::numpydoc==0.8.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::odo==0.5.1=py37_0- https://repo.anaconda.com/pkgs/main/win-64::seaborn==0.9.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::sphinx==1.7.9=py37_0- https://repo.anaconda.com/pkgs/main/win-64::spyder==3.3.1=py37_1- https://repo.anaconda.com/pkgs/main/win-64::statsmodels==0.9.0=py37h452e1ab_0- defaults/win-64::_anaconda_depends==5.3.1=py37_0
failedCondaMemoryError: The conda process ran out of memory. Increase system memory and/or try again.

conda update conda,conda update numpy,conda update --name base conda,在cat(自建虚拟环境)和base里都报错:

CondaMemoryError: The conda process ran out of memory. Increase system memory and/or try again.

还有的朋友建议:

conda update conda -c conda-canary

但是仍旧不行,报错如下,和前面的报错也一样。 

CondaMemoryError:conda 进程内存不足答案 - 爱码网

更新anaconda的版本也报同样的错:

(base) PS E:\matlab> conda update anaconda
Collecting package metadata (repodata.json): done
Solving environment: \
The environment is inconsistent, please check the package plan carefully
The following packages are causing the inconsistency:- defaults/win-64::anaconda==custom=py37_1- https://repo.anaconda.com/pkgs/main/win-64::bkcharts==0.2=py37_0- https://repo.anaconda.com/pkgs/main/win-64::blaze==0.11.3=py37_0- https://repo.anaconda.com/pkgs/main/win-64::bokeh==0.13.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::dask==0.19.1=py37_0- https://repo.anaconda.com/pkgs/main/win-64::numpydoc==0.8.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::odo==0.5.1=py37_0- https://repo.anaconda.com/pkgs/main/win-64::seaborn==0.9.0=py37_0- https://repo.anaconda.com/pkgs/main/win-64::sphinx==1.7.9=py37_0- https://repo.anaconda.com/pkgs/main/win-64::spyder==3.3.1=py37_1- https://repo.anaconda.com/pkgs/main/win-64::statsmodels==0.9.0=py37h452e1ab_0- defaults/win-64::_anaconda_depends==5.3.1=py37_0
failedCondaMemoryError: The conda process ran out of memory. Increase system memory and/or try again.

找到好久找到了一个解决方案:

 https://github.com/conda/conda/issues/10751

解决方案

说到最后实在是稀松平常,我检查了一下程序逻辑。我发现在传递参数的过程中。

  File "E:\matlab\CHB-MIT-DATA\epilepsy_eeg_classification\preprocessing.py", line 117, in eeg_preprocessing
    res = pd.DataFrame(res, columns=column_names)
  File "E:\matlab\CHB-MIT-DATA\epilepsy_eeg_classification\preprocessing.py", line 334, in <module>

虽然报错在117处,但是,实际上在传递的这两个数据处,通过debug的方式,发现获取的数据的列数要大于实际列数。那是因为,信号的channel变化的,而不是23个固定不变的,所以,只需要把这个固定的23改为,len(channel)就能获取到具体的数字。

        for i in range(23):features.extend(eeg_features(temp[i]).tolist())

改为

        for i in range(len(channels)):features.extend(eeg_features(temp[i]).tolist())

即可。

需要特别说明的是,conda创建的虚拟环境不要胡乱删除,否则会报很多错,你可以根据报错内容删除一些相应的文件,但是不能删除过多的文件。否则会报无数的错误。

这会让你非常头疼。这三篇文章都是我删错文件报错的。

 你会发现你无意中删除了一些包的依赖,这就麻烦了。

另外,我的程序报错或许和你的虽然报错一样,但是具体错误的地方不一样,这个时候,你就要好好检查你生成的数据和列名是否符合情况。可以参考这篇文章来看看,或许能够解决你的错误:

已解决ValueError: 4 columns passed, passed data had 2 columns_无 羡ღ的博客-CSDN博客

参考文章

Packagenotinstallederror:未安装在前缀中 - IT宝库

相关文章:

AssertionError: 618 columns passed, passed data had 508 columns【已解决】

问题描述 程序中断&#xff0c;报错如下AssertionError: 618 columns passed, passed data had 508 columns Exception has occurred: ValueError 618 columns passed, passed data had 508 columns AssertionError: 618 columns passed, passed data had 508 columnsThe abo…...

166_技巧_Power BI 窗口函数处理连续发生业务问题

166_技巧_Power BI 窗口函数处理连续发生业务问题 一、背景 在生产经营的数据监控中&#xff0c;会有一类指标需要监控是否连续发生&#xff0c;从而根据其在设定区间中的连续频次来评价业务。 例如&#xff1a; 员工连续迟到天数。销售金额连续上升或者下降。用户连续登陆…...

电子科技大学人工智能期末复习笔记(五):机器学习

目录 前言 监督学习 vs 无监督学习 回归 vs 分类 Regression vs Classification 训练集 vs 测试集 vs 验证集 泛化和过拟合 Generalization & Overfitting 线性分类器 Linear Classifiers 激活函数 - 概率决策 ⚠线性回归 决策树 Decision Trees 决策树构建递归…...

使用DDD指导业务设计的总结思考

领域驱动设计&#xff08;DDD&#xff09; 是 Eric Evans 提出的一种软件设计方法和思想&#xff0c;主要解决业务系统的设计和建模。DDD 有大量难以理解的概念&#xff0c;尤其是翻译的原因&#xff0c;某些词汇非常生涩&#xff0c;例如&#xff1a;模型、限界上下文、聚合、…...

面试官问:如何确保缓存和数据库的一致性?

如果你对这个问题有过研究&#xff0c;应该可以发现这个问题其实很好回答&#xff0c;如果第一次听到或者第一次遇到这个问题&#xff0c;估计会有点懵&#xff0c;今天我们来聊聊这个话题。 1、问题分析 首先我们来看看为什么会有这个问题&#xff01; 我们在日常开发中&am…...

16.数据库Redis

一、基本概念 Redis&#xff08;Remote Dictionary Server&#xff09;译为“远程字典服务”&#xff0c;它是一款基于内存实现的键值型 NoSQL 数据库&#xff0c; 通常也被称为数据结构服务器&#xff0c;这是因为它可以存储多种数据类型&#xff0c;比如 string&#xff08;字…...

【Redis高级-集群分片】

单机安装Redis首先需要安装Redis所需要的依赖&#xff1a;yum install -y gcc tclRedis安装包上传到虚拟机的任意目录&#xff1a;我放到了/tmp目录&#xff1a;解压缩&#xff1a;tar -zxvf /tmp/redis-6.2.4.tar.gz -C /tmp解压后&#xff1a;进入redis目录&#xff1a;cd /t…...

CSDN - CSDN27题解

文章目录幸运数字题目描述解题思路AC代码投篮题目描述解题思路AC代码通货膨胀-x国货币题目描述解题思路AC代码最后一位题目描述解题思路AC代码CSDN编程竞赛报名地址&#xff1a;https://edu.csdn.net/contest/detail/41 这次题目描述刚开始好像有些问题&#xff0c;之后被修正了…...

docker拉取mysql

搜索mysql版本docker search mysql搜索获赞数(星星数量) 大于 1000 的镜像docker search --filterstars1000 mysql搜索官方发布的版本docker search --filter is-officialtrue mysql搜索版本号docker search mysql57拉取docker pull devbeta/mysql57查看下载镜像docker images启…...

在Linux上安装Python3

记录&#xff1a;373场景&#xff1a;在CentOS 7.9操作系统上&#xff0c;安装Python-3.8.9环境。版本&#xff1a;JDK 1.8 Python-3.8.9官网地址&#xff1a;https://www.python.org下载地址&#xff1a;https://www.python.org/ftp/python/1.安装基础依赖1.1安装gcc(1)安装命…...

23 种设计模式的通俗解释,看完秒懂

01 工厂方法 追 MM 少不了请吃饭了&#xff0c;麦当劳的鸡翅和肯德基的鸡翅都是 MM 爱吃的东西&#xff0c;虽然口味有所不同&#xff0c;但不管你带 MM 去麦当劳或肯德基&#xff0c;只管向服务员说「来四个鸡翅」就行了。麦当劳和肯德基就是生产鸡翅的 Factory 工厂模式&…...

如何做好需求管理?经验方法、模型、工具

需求管理能力是衡量产品经理能力的一个重要指标。因为需求是产品的基石&#xff0c;只有选取恰当的方法进行需求分析及管理&#xff0c;才能更好的构建产品方案&#xff0c;从而输出精准的产品定义。结合本人学习和自身经验&#xff0c;打算将需求管理分”需求挖掘”、”需求分…...

怎么用期货做风险对冲(如何利用期货对冲风险)

不同期货市场的同一期货品种的对冲交易怎么做 不同 期货市场 的同一期货品种的 对冲交易 。 因为地域和 制度环境 不同&#xff0c;同一种期货品种在不同市场的同一时间的价格很可能是不一样的&#xff0c;并且也是在不断变化的。 这样在一个市场做多头买进&#xff0…...

C++标准模板库type_traits源码剖析

一、type_traits源码介绍 1、type_traits是C11提供的模板元基础库。 2、type_traits可实现在编译期计算。包括添加修饰、萃取、判断查询、类型推导等等功能。 3、type_traits提供了编译期的true和false。 二、type_traits的作用 1、根据不同类型&#xff0c;模板匹配不同版本…...

Python获取公众号(pc客户端)数据,使用Fiddler抓包工具

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 今天来教大家如何使用Fiddler抓包工具&#xff0c;获取公众号&#xff08;PC客户端&#xff09;的数据。 Fiddler是一个http协议调试代理工具&#xff0c;它能够记录并检查所有你的电脑和互联网之间的http通讯&#xff0c;…...

Maven进阶

这里写目录标题1.分模块开发1.1 模块更新后,会造成的影响2.依赖管理2.1 依赖传递2.2 可选依赖(隐藏自己的依赖,不让别人用)2.3 排除依赖(用别人的资源,把不用的去了)3.聚合与继承3.1 为什么要使用聚合工程?3.2 聚合工程开发2.1 聚合工程三级目录1.分模块开发 我们之前做的项目…...

AXI实战(一)-为AXI总线搭建简单的仿真测试环境

AXI实战(一)-搭建简单仿真环境 看完在本文后,你将可能拥有: 一个可以仿真AXI/AXI_Lite总线的完美主端(Master)或从端(Slave)一个使用SystemVerilog仿真模块的船信体验小何的AXI实战系列开更了,以下是初定的大纲安排: 欢迎感兴趣的朋友关注并支持,以下为正文部分 文章目录…...

数据库管理-第五十六期 监控(20230210)

数据库管理 2023-02-10第五十六期 监控1 怎么监控2 直观3 历史分析4 另一个BUG总结第五十六期 监控 春节后的7天班过后就来到了2月份&#xff0c;本周对之前发现X8M上的那个bug进行补丁修复和协助从12.2迁移了一套PDB到这个一体机上面&#xff0c;2次割接。这周还和原厂老大哥…...

测试开发,测试架构师为什么能拿50 60k呢需要掌握哪些技能呢

这篇文章是软件工程系列知识总结的第五篇&#xff0c;同样我会以自己的理解来阐述软件工程中关于架构设计相关的知识。相比于我们常见的研发架构师&#xff0c;测试架构师是近几年才出现的一个岗位&#xff0c;当然岗位title其实没有特殊的含义&#xff0c;在我看来测试架构师其…...

Miniblink 入门

miniblink官网&#xff1a;入门之前强烈建议将Miniblink介绍仔细看一遍。 MB内核组件标准版接口文档&#xff1a;这里列举了所有的api以及简单的说明&#xff0c;但是本人建议还是看wke.h更方便&#xff0c;里面都是宏实现的&#xff0c;直接搜相关函数即可。 mb demo下载和参…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...