Jetsonnano B01 笔记7:Mediapipe与人脸手势识别
目录
MediaPipe介绍与安装:
安装更新 APT 下载列表:
安装 pip:
更新 pip:
传输文件:
MediaPipe使用流程:
Mediapipe 人脸识别:
输入指令安装依赖包:
编写Python程序:
效果测试:
Mediapipe 手势识别:
编写python程序:
效果测试:
MediaPipe介绍与安装:
MediaPipe 优点1) 支持各种平台和语言,如 IOS 、 Android 、 C++ 、 Python 、 JAVAScript 、 Coral 等。2) 速度很快,模型基本可以做到实时运行。3) 模型和代码能够实现很高的复用率。MediaPipe 缺点1) 对于移动端, MediaPipe 略显笨重,需要至少 10M 以上的空间。2) 深度依赖于 Tensorflow ,若想更换成其他机器学习框架,需要更改大量代码。3) 使用的是静态图,虽然有助于提高效率,但也会导致很难发现错误。
安装更新 APT 下载列表:
sudo apt update 安装 pip:
sudo apt install python3-pip 更新 pip:
python3 -m pip install --upgrade pip 传输文件:
将mediapipe传输给Jetson:
![]()
文件下载:https://download.csdn.net/download/qq_64257614/88322416?spm=1001.2014.3001.5503
在jetson桌面将其拖进文件管理的home目录然后输入终端指令进行安装:
pip3 install mediapipe-0.8.5_cuda102-cp36-cp36m-linux_aarch64.whl 安装成功提示:

MediaPipe使用流程:

Mediapipe 人脸识别:
输入指令安装依赖包:
pip3 install dataclasses
编写Python程序:
import cv2
import mediapipe as mp
import timelast_time = 0
current_time = 0
fps = 0.0
def show_fps(img):global last_time, current_time, fpslast_time = current_timecurrent_time = time.time()new_fps = 1.0 / (current_time - last_time)if fps == 0.0:fps = new_fps if last_time != 0 else 0.0else:fps = new_fps * 0.2 + fps * 0.8fps_text = 'FPS: {:.2f}'.format(fps)cv2.putText(img, fps_text, (11, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (32, 32, 32), 4, cv2.LINE_AA)cv2.putText(img, fps_text, (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (240, 240, 240), 1, cv2.LINE_AA)return imgmp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils# For webcam input:
cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:while cap.isOpened():success, image = cap.read()if not success:print("Ignoring empty camera frame.")# If loading a video, use 'break' instead of 'continue'.continue# To improve performance, optionally mark the image as not writeable to# pass by reference.image.flags.writeable = Falseimage = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)results = face_detection.process(image)# Draw the face detection annotations on the image.image.flags.writeable = Trueimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)if results.detections:for detection in results.detections:mp_drawing.draw_detection(image, detection)# Flip the image horizontally for a selfie-view display.image = show_fps(cv2.flip(image, 1))cv2.imshow('MediaPipe Face Detection', image)if cv2.waitKey(5) & 0xFF == 27:break
cap.release()
最后传输python文件,然后输入指令运行,注意放在文件夹中的需要使用cd命令进行目录的跳转
效果测试:
Mediapipe人脸识别
Mediapipe 手势识别:
编写python程序:
import cv2
import mediapipe as mp
import numpy as np
import timelast_time = 0
current_time = 0
fps = 0.0
def show_fps(img):global last_time, current_time, fpslast_time = current_timecurrent_time = time.time()new_fps = 1.0 / (current_time - last_time)if fps == 0.0:fps = new_fps if last_time != 0 else 0.0else:fps = new_fps * 0.2 + fps * 0.8fps_text = 'FPS: {:.2f}'.format(fps)cv2.putText(img, fps_text, (11, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (32, 32, 32), 4, cv2.LINE_AA)cv2.putText(img, fps_text, (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (240, 240, 240), 1, cv2.LINE_AA)return imgdef distance(point_1, point_2):"""计算两个点间的距离:param point_1: 点1:param point_2: 点2:return: 两点间的距离"""return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] - point_2[1]) ** 2)def vector_2d_angle(v1, v2):"""计算两向量间的夹角 -pi ~ pi:param v1: 第一个向量:param v2: 第二个向量:return: 角度"""norm_v1_v2 = np.linalg.norm(v1) * np.linalg.norm(v2)cos = v1.dot(v2) / (norm_v1_v2)sin = np.cross(v1, v2) / (norm_v1_v2)angle = np.degrees(np.arctan2(sin, cos))return angledef get_hand_landmarks(img_size, landmarks):"""将landmarks从medipipe的归一化输出转为像素坐标:param img: 像素坐标对应的图片:param landmarks: 归一化的关键点:return:"""w, h = img_sizelandmarks = [(lm.x * w, lm.y * h) for lm in landmarks]return np.array(landmarks)def hand_angle(landmarks):"""计算各个手指的弯曲角度:param landmarks: 手部关键点:return: 各个手指的角度"""angle_list = []# thumb 大拇指angle_ = vector_2d_angle(landmarks[3] - landmarks[4], landmarks[0] - landmarks[2])angle_list.append(angle_)# index 食指angle_ = vector_2d_angle(landmarks[0] - landmarks[6], landmarks[7] - landmarks[8])angle_list.append(angle_)# middle 中指angle_ = vector_2d_angle(landmarks[0] - landmarks[10], landmarks[11] - landmarks[12])angle_list.append(angle_)# ring 无名指angle_ = vector_2d_angle(landmarks[0] - landmarks[14], landmarks[15] - landmarks[16])angle_list.append(angle_)# pink 小拇指angle_ = vector_2d_angle(landmarks[0] - landmarks[18], landmarks[19] - landmarks[20])angle_list.append(angle_)angle_list = [abs(a) for a in angle_list]return angle_listdef h_gesture(angle_list):"""通过二维特征确定手指所摆出的手势:param angle_list: 各个手指弯曲的角度:return : 手势名称字符串"""thr_angle = 65.thr_angle_thumb = 53.thr_angle_s = 49.gesture_str = "none"if (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "fist"elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "gun"elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "hand_heart"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "one"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "two"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] > thr_angle):gesture_str = "three"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "ok"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "four"elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "five"elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s):gesture_str = "six"else:"none"return gesture_strmp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands# For webcam input:
cap = cv2.VideoCapture(0)
with mp_hands.Hands(min_detection_confidence=0.5,min_tracking_confidence=0.5) as hands:while cap.isOpened():success, image = cap.read()if not success:print("Ignoring empty camera frame.")# If loading a video, use 'break' instead of 'continue'.continue# Flip the image horizontally for a later selfie-view display, and convert# the BGR image to RGB.image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)# To improve performance, optionally mark the image as not writeable to# pass by reference.image.flags.writeable = Falseresults = hands.process(image)# Draw the hand annotations on the image.image.flags.writeable = Trueimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)gesture = "none"if results.multi_hand_landmarks:for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(image, hand_landmarks, mp_hands.HAND_CONNECTIONS)landmarks = get_hand_landmarks((image.shape[1], image.shape[0]), hand_landmarks.landmark)angle_list = hand_angle(landmarks)gesture = h_gesture(angle_list)if gesture != "none":break;image = show_fps(cv2.flip(image, 1))cv2.putText(image, gesture, (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 0, 0), 4)cv2.imshow('MediaPipe Hands', image)if cv2.waitKey(5) & 0xFF == 27:break
cap.release()
效果测试:
Mediapipe手势识别
相关文章:
Jetsonnano B01 笔记7:Mediapipe与人脸手势识别
今日继续我的Jetsonnano学习之路,今日学习安装使用的是:MediaPipe 一款开源的多媒体机器学习模型应用框架。可在移动设备、工作站和服务 器上跨平台运行,并支持移动 GPU 加速。 介绍与程序搬运官方,只是自己的学习记录笔记&am…...
vue学习之v-if/v-else/v-else-if
v-else/v-else-if 创建 demo7.html,内容如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Docum…...
ansible的安装和简单的块使用
目录 一、概述 二、安装 1、选择源 2、安装ansible 3、模块查看 三、实验 1、拓扑编辑 2、设置组、ping模块 3、hostname模块 4、file模块 编辑 5、stat模块 6、copy模块(本地拷贝到远程) 7、fetch模块与copy模块类似,但作用…...
Android 状态栏显示运营商名称
Android 原生设计中在锁屏界面会显示运营商名称,用户界面中,大概是基于 icon 数量长度显示考虑,对运营商名称不作显示。但是国内基本都加上运营商名称。对图标显示长度优化基本都是:缩小运营商字体、限制字数长度、信号图标压缩上…...
10.Xaml ListBox控件
1.运行界面 2.运行源码 a.Xaml 源码 <Grid Name="Grid1"><!--IsSelected="True" 表示选中--><ListBox x:Name="listBo...
基于vue3和element-plus的省市区级联组件
git地址:https://github.com/ht-sauce/elui-china-area-dht 使用:npm i elui-china-area-dht 默认使用 使用方法 <template><div class"app"><!--默认使用--><elui-china-area-dht change"onChange"></elui-china…...
Paper: 利用RNN来提取恶意软件家族的API调用模式
论文 摘要 恶意软件家族分类是预测恶意软件特征的好方法,因为属于同一家族的恶意软件往往有相似的行为特征恶意软件检测或分类方法分静态分析和动态分析两种: 静态分析基于恶意软件中包含的特定签名进行分析,优点是分析的范围覆盖了整个代码…...
sdkman 安装以及 graalvm安装
sdkman安装以及graalvm安装全过程, (可能需要梯子) tiamTiam-Lenovo:~$ curl -s "https://get.sdkman.io" | bash-syyyyyyys:/yho: -yd./yh/ m..oho. hy ..sh/ :N -/…...
如何正确使用 WEB 接口的 HTTP 状态码和业务状态码?
当设计和开发 Web 接口时,必然会和 HTTP 状态码与业务状态码这两个概念打交道。很多同学可能没有注意过这两个概念或者两者的区别,做得稀里糊涂,接下来详细讲解下二者的定义、区别和使用方法。 HTTP 状态码 HTTP 状态码是由 HTTP 协议定义的…...
Spark【Spark SQL(三)DataSet】
DataSet DataFrame 的出现,让 Spark 可以更好地处理结构化数据的计算,但存在一个问题:编译时的类型安全问题,为了解决它,Spark 引入了 DataSet API(DataFrame API 的扩展)。DataSet 是分布式的数…...
制作立体图像实用软件:3DMasterKit 10.7 Crack
3DMasterKit 软件专为创建具有逼真 3D 和运动效果的光栅图片而设计:翻转、动画、变形和缩放。 打印机、广告工作室、摄影工作室和摄影师将发现 3DMasterKit 是一种有用且经济高效的解决方案,可将其业务扩展到新的维度,提高生成的 3D 图像和光…...
高校 Web 站点网络安全面临的主要的威胁
校园网 Web 站点的主要安全威胁来源于计算机病毒、内部用户恶意攻击和 破坏、内部用户非恶意的错误操作和网络黑客入侵等。 2.1 计算机病毒 计算机病毒是指编制者在计算机程序中插入的破坏计算机功能或者数据, 影响计算机使用并且能够自我复制的一组计算机指令或…...
vue前端解决跨域
1,首先 axios请求,看后端接口路径,http://122.226.146.110:25002/api/xx/ResxxList,所以baseURL地址改成 ‘/api’ let setAxios originAxios.create({baseURL: /api, //这里要改掉timeout: 20000 // request timeout}); export default s…...
【Cicadaplayer】解码线程及队列实现
4.4分支https://github.com/alibaba/CicadaPlayer/blob/release/0.4.4/framework/codec/ActiveDecoder.h对外:送入多个包,获取一个帧 int send_packet(std::unique_ptr<IAFPacket> &packet, uint64_t timeOut) override;int getFrame(std::u...
把文件上传到Gitee的详细步骤
目录 第一步:创建一个空仓库 第二步:找到你想上传的文件所在的地址,打开命令窗口,git init 第三步:git add 想上传的文件 ,git commit -m "给这次提交取个名字" 第四步:和咱们在第…...
基于keras中Lenet对于mnist的处理
文章目录 MNIST导入必要的包加载数据可视化数据集查看数据集的分布开始训练画出loss图画出accuracy图 使用数据外的图来测试图片可视化转化灰度图的可视化可视化卷积层的特征图第一层卷积 conv1 和 pool1第二层卷积 conv2 和 pool2 MNIST MNIST(Modified National …...
Python爬虫 教程:IP池的使用
前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 一、简介 爬虫中为什么需要使用代理 一些网站会有相应的反爬虫措施,例如很多网站会检测某一段时间某个IP的访问次数,如果访问频率…...
Ansible之playbook剧本
一、playbook概述1.1 playbook 介绍1.2 playbook 组成部分 二、playbook 示例2.1 playbook 启动及检测2.2 实例一2.3 vars 定义、引用变量2.4 指定远程主机sudo切换用户2.5 when条件判断2.6 迭代2.7 Templates 模块1.先准备一个以 .j2 为后缀的 template 模板文件,设…...
unique_ptr的大小探讨
unique_ptr大小和删除器有很大关系,具体区别看如下代码的分析。不要让unique_ptr占用的空间太大,否则不会达到裸指针同样的效果。 #include <iostream> #include <memory> using namespace std;class Widget {int m_x;int m_y;int m_z;publ…...
人工智能TensorFlow PyTorch物体分类和目标检测合集【持续更新】
1. 基于TensorFlow2.3.0的花卉识别 基于TensorFlow2.3.0的花卉识别Android APP设计_基于安卓的花卉识别_lilihewo的博客-CSDN博客 2. 基于TensorFlow2.3.0的垃圾分类 基于TensorFlow2.3.0的垃圾分类Android APP设计_def model_load(img_shape(224, 224, 3)_lilihewo的博客-CS…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
