当前位置: 首页 > news >正文

算法通关村第十三关——幂运算问题解析

前言

幂运算为常见的数学运算,形式为 a b a^b ab ,其中a为底数,b为指数,

力扣中,幂运算相关的问题主要是判断一个数是不是特定正整数的整数次幂,以及快速幂的处理。

1.求2的幂

力扣231题,给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true;否则,返回 false

分析:第一种方法是我们可以用通过逐渐缩小n值来判断是否是2的幂次方,只需要循环用除的方法就可以了,还需要判断一下n是否是正整数,如果不是就直接返回false。第二种方法是位运算,如果n是2的幂次方,那么n的二进制表示就只有一个1,如果存在非负整数 k 使得 n = 2 k n=2^k n=2k,则 n 的二进制表示为 1 后面跟 k 个0,比如n=4,其二进制表示为 ( 0100 ) 2 (0100)_2 (0100)2,n-1也就是3的二进制表示则为 ( 0011 ) 2 (0011)_2 (0011)2 ,使用位运算n & (n - 1)如果结果为0就说明n是2的幂次方,否则不是。

代码如下:

/*** 采用除法* @param n {number}* @return {boolean}* */
function isPowerOfTwo(n) {if (n <= 0) {return false;}// 这里2可以替换为任意正整数m,就是计算m的幂次方while (n % 2 === 0) {n = parseInt(n / 2);}if (n === 1) {return true;} else {return false;}
}/*** 采用位运算* @param n {number}* @return {boolean}* */function isPowerOfTwo(n) {if (n <= 0) {return false;}// 如果存在非负整数 k 使得 n=2^k,则 n 的二进制表示为 1 后面跟 k 个0return n & (n - 1) === 0;
}

拓展知识:采用循环除法的方法中,2可以替换为任意正整数m,就是计算m的幂次方。

2.求3的幂

力扣326题, 给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。整数 n 是 3 的幂次方需满足:存在整数 x 使得 n = = 3 x n == 3^x n==3x

分析:用除法思路与上题一样。这里说一下还可以用位运算的解决办法。我们知道 3 0 = 1 , 3 1 = 3 , 3 2 = 9 , . . . , 3 19 = 1162261467 3^0=1,3^1=3,3^2=9,...,3^{19}=1162261467 30=1,31=3,32=9,...,319=1162261467 ,在最大正整数范围之内,如果是3的幂就一定是1162261467的除数。

代码如下:

function isPowerOfThree(n) {if (n <= 0) {return false;}// 2^31 - 1内最大的3的幂为3^19=1162261467,只要n为1162261647的除数就说明是3的幂次方return (1162261467 % n) === 0;
}

3.求4的幂

力扣342 题,给定一个整数,写一个函数来判断它是否是 4 的幂次方。如果是,返回 true ;否则,返回 false 。整数 n 是 4 的幂次方需满足:存在整数 x 使得 n = = 4 x n == 4^x n==4x

分析:第一种方法还是可以用循环除法。第二种方法就是位运算,这种方法可以在求2的幂的位运算解法进一步得出, 4 k 4^k 4k其实就是 2 2 k 2^{2k} 22k ,2的偶数次幂,判断二进制表示中1的位置是否出现在从低位开始的第偶数位上即可,这里规定最低位为第0位。比如n=16,其二进制表示为 ( 00010000 ) 2 (00010000)_2 (00010000)2,1的位置为第4位。创建一个32位有符号整数 ( 10101010101010101010101010101010 ) 2 (10101010101010101010101010101010)_2 (10101010101010101010101010101010)2,让其偶数为0,奇数位为1,与n进行位与运算,如果结果为0,说明n为4的幂次方数,否则不是。为了使代码更简洁,还可以将创建的32位有符号整数用16进制表示,即 ( a a a a a a a a ) 16 (aaaaaaaa)_{16} (aaaaaaaa)16 , 也就是0xaaaaaaaa

代码如下:

function isPowerOfFour(n) {if (n <= 0) {return false;}return (n & (n - 1)) === 0 && (n & 0xaaaaaaaa) === 0;
}

相关文章:

算法通关村第十三关——幂运算问题解析

前言 幂运算为常见的数学运算&#xff0c;形式为 a b a^b ab &#xff0c;其中a为底数&#xff0c;b为指数&#xff0c; 力扣中&#xff0c;幂运算相关的问题主要是判断一个数是不是特定正整数的整数次幂&#xff0c;以及快速幂的处理。 1.求2的幂 力扣231题&#xff0c;给…...

Python 之使用Numpy库来加载Numpy(.npy)文件并检查其内容

文章目录 总的介绍data.dtypedata.shapedata.ndimdata.size 总的介绍 要判断一个Numpy&#xff08;.npy&#xff09;文件的数据集类型&#xff0c;你可以使用Python中的Numpy库来加载该文件并检查其内容。以下是一些常见的步骤&#xff1a; 导入Numpy库&#xff1a; 首先&…...

C#学习系列之UDP同端口收发问题

C#学习系列之UDP同端口收发问题 前言解决办法关于JoinMulticastGroup总结 前言 想测试自己的程序问题&#xff0c;建立了两个UDP程序&#xff0c;一个往端口中接到数就传出去&#xff0c;另一个从这个端口接数据来解析。 出现的问题是 每次打开端口&#xff0c;另一个程序就无…...

SpringMVC之文件上传下载以及jrebel的使用

目录 一、文件上传 1.1 导入依赖 1.2 配置文件上传解析器 1.3 配置服务器存放文件地址 1.3.1 点击编辑Configurations 1.3.2 将项目部署至tomcat服务器上 1.3.3 配置相对路径 1.4 导入PropertiesUtil工具类 1.5 编写resource.properties 1.6 添加sql 1.7 编写PageCo…...

基于Fomantic UI Web构建 个人导航站点网站源码 网站技术导航源码

BYR-Navi-master好看有个性的网站技术导航源码 该网站基于Fomantic UI Web框架构建&#xff0c;整个项目的设计和构建具有高度的配置和定制灵活性。 整体风格比较适合个人导航站点使用 搜索框输入关键词后&#xff0c;点击上方搜索引擎图标可跳转打开对应搜索引擎搜索结果&am…...

DRF02-请求响应与路由

文章目录 1. http请求响应1.1. 请求与响应1.1.1 Request1.1.1.1 常用属性1).data2).query_params3)request._request基本使用1.1.2 Response1.1.2.1 构造方式1.1.2.2 response对象的属性1).data2).status_code3).content1.1.2.3 状态码1)信息告知 - 1xx2)成功 - 2xx3)…...

http直接调用paddlepaddle实现文字转语音,语音转文字

由于环境问题,折腾好久,记录下来,安装后使用还是很方便的 记录下来,方便自己,方便大家 1.安装 参考官方文档: mirrors / paddlepaddle / paddlespeech GitCode 2.启动server 参考官方文档: mirrors / paddlepaddle / paddlespeech GitCode 3.直接调用 参考官方文档: htt…...

9. xaml ComboBox控件

1.运行图像 2.运行源码 a.Xaml源码 <Grid Name="Grid1"><!--IsDropDownOpen="True" 默认就是打开的--><ComboBox x:Name="co...

【后量子密码】CRYSTALS-KYBER 算法(二):密钥封装 KEM(附源码分析)

一、前言 Kyber 算法是一种满足 IND-CCA2 安全的密钥封装机制(key-encapsulation mechanism,KEM),其安全性依赖于MLWE 问题的困难性。Kyber 算法构建采用了两阶段的方法:首先引入了一种IND-CPA 安全的公钥加密方案,用于加密长度为32字节的消息,称之为Kyber.CPAPKE;然后…...

什么是原⼦操作?在 JUC 中有哪些原⼦类?

原子操作是一种在多线程环境下不会被中断的操作,它要么完全执行,要么完全不执行,不会出现中间状态。原子操作通常是对共享数据的操作,确保多个线程同时访问共享数据时不会导致数据不一致或损坏。 在Java中,java.util.concurrent 包提供了一组原子类,用于执行原子操作。以…...

2022年12月 C/C++(八级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:生理周期 人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,人会在相应的方面表现出色。例如,智力周期的高峰,人会思维敏捷,精力容易高度集中。因…...

Hadoop的HDFS的集群安装部署

注意&#xff1a;主机名不要有/_等特殊的字符&#xff0c;不然后面会出问题。有问题可以看看第5点&#xff08;问题&#xff09;。 1、下载 1.1、去官网&#xff0c;点下载 下载地址&#xff1a;https://hadoop.apache.org/ 1.2、选择下载的版本 1.2.1、最新版 1.2.2、其…...

uniapp 在 onLoad 事件中 this.$refs 娶不到的问题

现象 本人想在主页面加载的时候调用子组件的方法。示例代码如下&#xff1a; 运行&#xff0c;发现 this.$refs 取不到。如下图所示&#xff1a; 解决方法&#xff0c;把onLoad 换为 onReady 就可以了。...

常見算法時間複雜度分析

当我们进行算法分析时&#xff0c;通常会忽略掉常数倍数的因子和低阶项&#xff0c;只考虑最高阶的项。这是因为在大规模问题下&#xff0c;较小的项和常数倍数的因子相对于最高阶的项来说变得可以忽略不计。 以下是一些常见的示例&#xff0c;说明了常数倍数的因子和高阶项对…...

自学Python05-学会Python中的函数定义

亲爱的同学们&#xff0c;今天我们将开始学习 Python 中的函数。函数就像一个魔法盒子&#xff0c;可以让我们在程序中执行一段代码&#xff0c;并且可以反复使用。这样&#xff0c;我们的程序就可以变得更加简洁和易于理解。现在&#xff0c;让我们一起来学习如何使用函数吧&a…...

设计模式-组合模式(Composite)

文章目录 前言一、组合模式的概念二、组合模式的优缺点1.优点2.缺点 三、组合模式的实现总结 前言 组合模式&#xff08;Composite Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许你将对象组合成树状结构以表示“整体-部分”的层次结构。组合模式使得客户端可以统…...

架构核心技术之微服务架构

小熊学Java&#xff1a;https://www.javaxiaobear.cn/&#xff0c;文末有免费资源 本文我们来学习微服务的架构设计 主要包括如下内容。 单体系统的困难&#xff1a;编译部署困难、数据库连接耗尽、服务复用困难、新增业务困难。 微服务框架&#xff1a;Dubbo 和 Spring Clou…...

SQL Server2022版+SSMS安装教程(保姆级)

SQL Server2022版SSMS安装教程&#xff08;保姆级&#xff09; 一&#xff0c;安装SQL Server数据库 1.下载安装包 &#xff08;1&#xff09;百度网盘下载安装包 链接&#xff1a;https://pan.baidu.com/s/1A-WRVES4EGv8EVArGNF2QQ?pwd6uvs 提取码&#xff1a;6uvs &…...

go语言基础---8

Http请求报文格式分析 package mainimport ("fmt""net" )func main() {//监听listener, err : net.Listen("tcp", ":8000")if err ! nil {fmt.Println("listener err", err)return}defer listener.Close()//阻塞等待用户的…...

Oracle的 dblink 学习笔记

文章目录 一、基础环境二、适用场景三、过程和方法四、参考资料 版权声明&#xff1a;本文为CSDN博主「杨群」的原创文章&#xff0c;遵循 CC 4.0 BY-SA版权协议&#xff0c;于2023年9月10日首发于CSDN&#xff0c;转载请附上原文出处链接及本声明。 原文链接&#xff1a;http…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...