PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失
PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失
torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean', label_smoothing=0.0)
功能:创建一个交叉熵损失函数:
l(x,y)=L={l1,…,lN}T,ln=−∑c=1Cwclogexn,c∑i=1Cexn,i⋅yn,cl(x,y)=L=\{l_1,\dots,l_N\}^T,l_n=-\sum^C_{c=1}w_c\log\frac{e^{x_{n,c}}}{\sum^C_{i=1}e^{x_{n,i}}}· y_{n,c} l(x,y)=L={l1,…,lN}T,ln=−c=1∑Cwclog∑i=1Cexn,iexn,c⋅yn,c
其中xxx是输入,yn,cy_{n,c}yn,c是标签向量元素(来自经过独热编码后的标签向量),www是类别权重,CCC是类别总数,NNN表示batch size。
输入:
-
size_average
与reduce
已被弃用,具体功能由参数reduction
代替 -
weight
:赋予每个类的权重,指定的权重必须是一维并且长度为CCC的数组,数据类型必须为tensor
格式 -
ignore_index
:指定一个被忽略,并且不影响网络参数更新的目标类别,数据类型必须是整数,即只能指定一个类别 -
reduction
:指定损失输出的形式,有三种选择:none
|mean
|sum
。none
:损失不做任何处理,直接输出一个数组;mean
:将得到的损失求平均值再输出,会输出一个数;sum
:将得到的损失求和再输出,会输出一个数注意:如果指定了ignore_index,则首先将ignore_index代表的类别损失删去,在剩下的损失数据里求均值,因此ignore_index所代表的的类别完全不会影响网络参数的更新
-
label_smoothing
:指定计算损失时的平滑量,其中0.0表示不平滑,关于平滑量可参考论文《Rethinking the Inception Architecture for Computer Vision》
注意:
- 输入应该包含原始、未经过标准化的预测值,
CrossEntropyLoss
函数已经内置softmax
处理 - 对于输入张量xxx,尺寸必须为(minibatch,C)(minibatch,C)(minibatch,C)或者(minibatch,C,d1,…,dK)(minibatch,C,d_1,\dots,d_K)(minibatch,C,d1,…,dK),后者对于计算高维输入时很有用,如计算二维图像中每个像素点的交叉熵损失,注意:K≥1K≥1K≥1
- 输入的张量yyy,尺寸必须为(minibatch)(minibatch)(minibatch)或者(minibatch,d1,…,dK)(minibatch,d_1,\dots,d_K)(minibatch,d1,…,dK),与xxx的尺寸相对应,后者也是用于高维数据的计算
- 注意xxx的第二维度尺寸与类别数量一一对应,并且yyy只需要输入物体类别序号即可,无需输入独热编码(该函数会自动对yyy做独热编码),yyy里面数据的大小不能超过xxx第二维度尺寸的大小减一(减一是因为标签yyy是从000开始计算)
代码案例
一般用法
import torch.nn as nn
import torchx = torch.randn((2, 8))
# 在0-7范围内,随机生成两个数,当做标签
y = torch.randint(0, 8, [2])
ce = nn.CrossEntropyLoss()
out = ce(x, y)
print(x)
print(y)
print(out)
输出
# x
tensor([[ 1.3712, 0.4903, -1.3202, 0.1297, -1.6004, -0.1809, -2.8812, -0.3088],[ 0.5855, -0.4926, 0.7647, -0.1717, -1.0418, -0.0381, -0.1307, -0.6390]])
# y
tensor([5, 0])
# 得到的交叉熵损失,默认返回损失的平均值
tensor(1.9324)
参数weight的用法
import torch.nn as nn
import torchx = torch.randn((2, 2))
y = torch.tensor([0, 1])
# 不添加weight
ce = nn.CrossEntropyLoss(reduction='none')
# 添加weight
ce_w = nn.CrossEntropyLoss(weight=torch.tensor([0.5, 1.5]), reduction='none')
out = ce(x, y)
out_w = ce_w(x, y)
print(x)
print(y)
print(out)
print(out_w)
输出
# x
tensor([[-1.1011, 0.6231],[ 0.2384, -0.3223]])
# y
tensor([0, 1])
# 不添加weight时的损失输出
tensor([1.8883, 1.0123])
# weight定义为[0.5, 1.5]时的损失
# 第一个数据(batch中第一个元素)由于标签为0
# 因此对应的损失乘以weight中第一个权重
# 第二个数据类似
tensor([0.9441, 1.5184])
参数ignore_index的用法
import torch.nn as nn
import torchx = torch.randn((2, 2))
y = torch.tensor([0, 1])
# 不添加ignore_index
ce = nn.CrossEntropyLoss(reduction='none')
# 添加ignore_index
ce_i = nn.CrossEntropyLoss(ignore_index = 0, reduction='none')
out = ce(x, y)
out_i = ce_i(x, y)
print(x)
print(y)
print(out)
print(out_i)
输出
# x
tensor([[-0.9390, -0.6169],[-0.7700, 0.3602]])
# y
tensor([0, 1])
# 不添加ignore_index时的损失输出
tensor([0.8671, 0.2799])
# ignore_index设置为0,表示忽略类别序号为0的损失
# 这里第一个数据标签设置为0,因此第一个损失清零
tensor([0.0000, 0.2799])
输入高维数据时
这里以对二维的预测图做损失为例
import torch.nn as nn
import torch
# 这里表示随机生成batch为1,图片尺寸为3*3
# 并且每个点有两个类别的预测图
x = torch.randn((1, 2, 3, 3))
# 这里表示预测图x对应的标签y
# 预测图x每个位置都会对应一个标签值
# x删去第二维度后的尺寸,就是标签y的尺寸
y = torch.randint(0, 2, [1, 3, 3])
ce = nn.CrossEntropyLoss(reduction='none')
out = ce(x, y)
print(x)
print(y)
print(out)
输出
# 输入的高维数据x
tensor([[[[ 0.8859, -2.0889, -0.6026],[-1.6448, 0.7807, 0.9609],[-0.0646, 0.2204, -0.7471]],[[ 0.7075, -0.7013, -0.9280],[-0.6913, 2.1507, -0.0758],[ 0.2139, 0.8387, 0.3743]]]])
# 对应的标签,预测图x长宽为多少,标签y的长宽就为多少
tensor([[[0, 0, 1],[0, 0, 0],[1, 0, 1]]])
# 输出的损失
# 函数会为预测图x上每个位置都生成一个损失,这里一共生成3*3个损失(对应长乘宽)
tensor([[[0.6079, 1.6105, 0.8690],[1.2794, 1.5964, 0.3035],[0.5635, 1.0493, 0.2820]]])
官方文档
nn.CrossEntropyLoss:https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
初步完稿于:2022年1月29日
相关文章:
PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失
PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失 torch.nn.CrossEntropyLoss(weightNone, size_averageNone, ignore_index-100, reduceNone, reductionmean, label_smoothing0.0)功能:创建一个交叉熵损失函数: l(x,y)L{l1,…,lN}T&…...
【VictoriaMetrics】什么是VictoriaMetrics
VictoriaMetrics是一个快速、经济、可扩展的监控解决方案和时间序列数据库,有单机版和集群版本,基础功能及集群版本基本功能不收费,VictoriaMetrics有二进制安装版本、Docker安装版本等多种安装方式,其源码及部署包更新迭代很快,VictoriaMetrics具有以下突出特点: 它可以作…...

(第五章)OpenGL超级宝典学习:统一变量(uniform variable)
统一变量 前言 本篇在讲什么 本篇记录对glsl中的变量uniform的认知和学习 本篇适合什么 适合初学Open的小白 适合想要学习OpenGL中uniform的人 本篇需要什么 对C语法有简单认知 对OpenGL有简单认知 最好是有OpenGL超级宝典蓝宝书 依赖Visual Studio编辑器 本篇的特色 …...

数据存储技术复习(四)未完
1.什么是NAS。一般用途服务器与NAS设备之间有何不同。NAS是一个基于IP的专用高性能文件共享和存储设备。—般用途服务器可用于托管任何应用程序,因为它运行的是一般用途操作系统NAS设备专用于文件服务。它具有专门的操作系统,专用于通过使用行业标准协议…...

Rust编码的信息窃取恶意软件源代码公布,专家警告已被利用
黑客论坛上发布了一个 用Rust编码的信息窃取恶意软件源代码 ,安全分析师警告,该恶意软件已被积极用于攻击。 该恶意软件的开发者称,仅用6个小时就开发完成,相当隐蔽, VirusTotal的检测率约为22% 。 恶意软件开发者在…...
diffusers编写自己的推理管道
英文文献:Stable Diffusion with 🧨 Diffusers 编写自己的推理管道 最后,我们展示了如何使用diffusers. 编写自定义推理管道是对diffusers库的高级使用,可用于切换某些组件,例如上面解释的 VAE 或调度程序。 例如&a…...

计算机操作系统 左万利 第二章课后习题答案
计算机操作系统 左万利 第二章课后习题答案 1、为何引进多道程序设计,在多道程序设计中,内存中作业的道数是否越多越好?说明原因。 引入多道程序设计技术是为了提高计算机系统资源的利用率。在多道程序系统中,内存中作业的道数并…...

CODESYS开发教程10-文件读写(SysFile库)
今天继续我们的小白教程,老鸟就不要在这浪费时间了😊。 前面一期我们介绍了CODESYS的文件操作库CAA File。这一期主要介绍CODESYS的SysFile库所包含的文件读写功能块,主要包括文件路径、名称、大小的获取以及文件的创建、打开、读、写、拷贝…...

Linux安装redis
Linux安装redis一.下载二.解压配置1.创建文件夹2.上传文件3.解压4.编译配置三.启动测试1.启动2.防火墙配置3.测试四.设置开机自启1.配置脚本2.添加服务3.测试一.下载 redis官网:https://redis.io/ redis官方下载地址:http://download.redis.io/releases…...

计算机组成与体系结构 性能设计 William Stallings 第2章 性能问题
2.1 优化性能设计例如,当前需要微处理器强大功能的桌面应用程序包括:图像处理、三维渲染、语音识别、视频会议、多媒体创作、文件的声音和视频注释、仿真建模从计算机组成与体系结构的角度来看,一方面,现代计算机的基本组成与50多…...

anaconda详细介绍、安装及使用(python)
anaconda详细介绍、安装及使用1 介绍1.1 简介1.2 特点1.3 版本下载2 Anaconda管理Python包命令3 安装3.1 windows安装4 操作4.1 Conda 操作4.2 Anaconda Navigator 操作4.3 Spyder 操作4.4 Jupyter Notebook 操作5 示例参考1 介绍 1.1 简介 Anaconda是用于科学计算(…...

雅思经验(6)
反正我是希望遇到的雅思听力section 4.里面填空的地方多一些,之后单选的部分少一些。练了一下剑9 test3 的section 4,感觉还是不难的,都是在复现,而且绕的弯子也不是很多。本次考试的目标就是先弄一个六分,也就是说&am…...
CentOS9源码编译libvirtd工具
卸载原有版本libvirt [rootcentos9 ~]# yum remove libvirt Centos9配置网络源 [rootcentos9 ~]# dnf config-manager --set-enabled crb [rootcentos9 ~]# dnf install epel-release epel-next-release 安装依赖包 [rootcentos9 ~]# yum install -y libtirpc-devel libxml2-de…...
搭建内网穿透
文章目录摘要npsfrp服务提供商摘要 内网穿透是一种方便的技术,可以让用户随时随地访问内网设备。有两种方式可以使用内网穿透:自己搭建,使用nps/frps软件;购买服务,快速享受内网穿透带来的便利。 nps 内网穿透。参考…...

vue3组件库项目学习笔记(八):Git 使用总结
目前组件库的开发已经接近尾声,因为这次是使用 git 进行协作的开发模式,在团队协作的时候遇到很多的问题,开发过程中发现小伙伴们对于 git 的使用还不是很熟练,这里就简单总结一下常用的 git 的操作,大致有:…...

ISO7320FCQDRQ1数字隔离器LMG1025QDEETQ1半桥GaN驱动器
1、数字隔离器 DGTL ISO 3000VRMS 2CH 8SOIC型号:ISO7320FCQDRQ1批次:新技术:容性耦合类型:通用隔离式电源:无通道数:2输入 - 侧 1/侧 2:2/0通道类型:单向电压 - 隔离:30…...

openmmlab 语义分割算法基础
本文是openmmlab AI实战营的第六次课程的笔记,以下是我比较关注的部分。简要介绍语义分割:如下图,左边原图,右边语义分割图,对每个像数进行分类应用语义分割在个各种场景下都非常重要,特别是在自动驾驶和医…...

2023年深圳/东莞/惠州CPDA数据分析师认证报名入口
CPDA数据分析师认证是中国大数据领域有一定权威度的中高端人才认证,它不仅是中国较早大数据专业技术人才认证、更是中国大数据时代先行者,具有广泛的社会认知度和权威性。 无论是地方政府引进人才、公务员报考、各大企业选聘人才,还是招投标加…...
RabbitMQ-客户端源码之AMQChannel
AMQChannel是一个抽象类,是ChannelN的父类。其中包含唯一的抽象方法: /*** Protected API - called by nextCommand to check possibly handle an incoming Command before it is returned to the caller of nextCommand. If this method* returns true…...

注意力机制(SE,ECA,CBAM) Pytorch代码
注意力机制1 SENet2 ECANet3 CBAM3.1 通道注意力3.2 空间注意力3.3 CBAM4 展示网络层具体信息1 SENet SE注意力机制(Squeeze-and-Excitation Networks):是一种通道类型的注意力机制,就是在通道维度上增加注意力机制,主要内容是是…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...