当前位置: 首页 > news >正文

PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失

PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失

torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean', label_smoothing=0.0)

功能:创建一个交叉熵损失函数:
l(x,y)=L={l1,…,lN}T,ln=−∑c=1Cwclog⁡exn,c∑i=1Cexn,i⋅yn,cl(x,y)=L=\{l_1,\dots,l_N\}^T,l_n=-\sum^C_{c=1}w_c\log\frac{e^{x_{n,c}}}{\sum^C_{i=1}e^{x_{n,i}}}· y_{n,c} l(x,y)=L={l1,,lN}Tln=c=1Cwclogi=1Cexn,iexn,cyn,c
其中xxx是输入,yn,cy_{n,c}yn,c是标签向量元素(来自经过独热编码后的标签向量),www是类别权重,CCC是类别总数,NNN表示batch size。

输入:

  • size_averagereduce 已被弃用,具体功能由参数reduction代替

  • weight:赋予每个类的权重,指定的权重必须是一维并且长度为CCC的数组,数据类型必须为tensor格式

  • ignore_index:指定一个被忽略,并且不影响网络参数更新的目标类别,数据类型必须是整数,即只能指定一个类别

  • reduction:指定损失输出的形式,有三种选择:none|mean|sumnone:损失不做任何处理,直接输出一个数组;mean:将得到的损失求平均值再输出,会输出一个数;sum:将得到的损失求和再输出,会输出一个数

    注意:如果指定了ignore_index,则首先将ignore_index代表的类别损失删去,在剩下的损失数据里求均值,因此ignore_index所代表的的类别完全不会影响网络参数的更新

  • label_smoothing:指定计算损失时的平滑量,其中0.0表示不平滑,关于平滑量可参考论文《Rethinking the Inception Architecture for Computer Vision》

注意:

  • 输入应该包含原始、未经过标准化的预测值,CrossEntropyLoss函数已经内置softmax处理
  • 对于输入张量xxx,尺寸必须为(minibatch,C)(minibatch,C)(minibatch,C)或者(minibatch,C,d1,…,dK)(minibatch,C,d_1,\dots,d_K)(minibatch,C,d1,,dK),后者对于计算高维输入时很有用,如计算二维图像中每个像素点的交叉熵损失,注意:K≥1K≥1K1
  • 输入的张量yyy,尺寸必须为(minibatch)(minibatch)(minibatch)或者(minibatch,d1,…,dK)(minibatch,d_1,\dots,d_K)(minibatch,d1,,dK),与xxx的尺寸相对应,后者也是用于高维数据的计算
  • 注意xxx的第二维度尺寸与类别数量一一对应,并且yyy只需要输入物体类别序号即可,无需输入独热编码(该函数会自动对yyy做独热编码),yyy里面数据的大小不能超过xxx第二维度尺寸的大小减一(减一是因为标签yyy是从000开始计算)

代码案例

一般用法

import torch.nn as nn
import torchx = torch.randn((2, 8))
# 在0-7范围内,随机生成两个数,当做标签
y = torch.randint(0, 8, [2])
ce = nn.CrossEntropyLoss()
out = ce(x, y)
print(x)
print(y)
print(out)

输出

# x
tensor([[ 1.3712,  0.4903, -1.3202,  0.1297, -1.6004, -0.1809, -2.8812, -0.3088],[ 0.5855, -0.4926,  0.7647, -0.1717, -1.0418, -0.0381, -0.1307, -0.6390]])
# y
tensor([5, 0])
# 得到的交叉熵损失,默认返回损失的平均值
tensor(1.9324)

参数weight的用法

import torch.nn as nn
import torchx = torch.randn((2, 2))
y = torch.tensor([0, 1])
# 不添加weight
ce = nn.CrossEntropyLoss(reduction='none')
# 添加weight
ce_w = nn.CrossEntropyLoss(weight=torch.tensor([0.5, 1.5]), reduction='none')
out = ce(x, y)
out_w = ce_w(x, y)
print(x)
print(y)
print(out)
print(out_w)

输出

# x
tensor([[-1.1011,  0.6231],[ 0.2384, -0.3223]])
# y
tensor([0, 1])
# 不添加weight时的损失输出
tensor([1.8883, 1.0123])
# weight定义为[0.5, 1.5]时的损失
# 第一个数据(batch中第一个元素)由于标签为0
# 因此对应的损失乘以weight中第一个权重
# 第二个数据类似
tensor([0.9441, 1.5184])

参数ignore_index的用法

import torch.nn as nn
import torchx = torch.randn((2, 2))
y = torch.tensor([0, 1])
# 不添加ignore_index
ce = nn.CrossEntropyLoss(reduction='none')
# 添加ignore_index
ce_i = nn.CrossEntropyLoss(ignore_index = 0, reduction='none')
out = ce(x, y)
out_i = ce_i(x, y)
print(x)
print(y)
print(out)
print(out_i)

输出

# x
tensor([[-0.9390, -0.6169],[-0.7700,  0.3602]])
# y
tensor([0, 1])
# 不添加ignore_index时的损失输出
tensor([0.8671, 0.2799])
# ignore_index设置为0,表示忽略类别序号为0的损失
# 这里第一个数据标签设置为0,因此第一个损失清零
tensor([0.0000, 0.2799])

输入高维数据时

这里以对二维的预测图做损失为例

import torch.nn as nn
import torch
# 这里表示随机生成batch为1,图片尺寸为3*3
# 并且每个点有两个类别的预测图
x = torch.randn((1, 2, 3, 3))
# 这里表示预测图x对应的标签y
# 预测图x每个位置都会对应一个标签值
# x删去第二维度后的尺寸,就是标签y的尺寸
y = torch.randint(0, 2, [1, 3, 3])
ce = nn.CrossEntropyLoss(reduction='none')
out = ce(x, y)
print(x)
print(y)
print(out)

输出

# 输入的高维数据x
tensor([[[[ 0.8859, -2.0889, -0.6026],[-1.6448,  0.7807,  0.9609],[-0.0646,  0.2204, -0.7471]],[[ 0.7075, -0.7013, -0.9280],[-0.6913,  2.1507, -0.0758],[ 0.2139,  0.8387,  0.3743]]]])
# 对应的标签,预测图x长宽为多少,标签y的长宽就为多少
tensor([[[0, 0, 1],[0, 0, 0],[1, 0, 1]]])
# 输出的损失
# 函数会为预测图x上每个位置都生成一个损失,这里一共生成3*3个损失(对应长乘宽)
tensor([[[0.6079, 1.6105, 0.8690],[1.2794, 1.5964, 0.3035],[0.5635, 1.0493, 0.2820]]])

官方文档

nn.CrossEntropyLoss:https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss

初步完稿于:2022年1月29日

相关文章:

PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失

PyTorch学习笔记:nn.CrossEntropyLoss——交叉熵损失 torch.nn.CrossEntropyLoss(weightNone, size_averageNone, ignore_index-100, reduceNone, reductionmean, label_smoothing0.0)功能:创建一个交叉熵损失函数: l(x,y)L{l1,…,lN}T&…...

【VictoriaMetrics】什么是VictoriaMetrics

VictoriaMetrics是一个快速、经济、可扩展的监控解决方案和时间序列数据库,有单机版和集群版本,基础功能及集群版本基本功能不收费,VictoriaMetrics有二进制安装版本、Docker安装版本等多种安装方式,其源码及部署包更新迭代很快,VictoriaMetrics具有以下突出特点: 它可以作…...

(第五章)OpenGL超级宝典学习:统一变量(uniform variable)

统一变量 前言 本篇在讲什么 本篇记录对glsl中的变量uniform的认知和学习 本篇适合什么 适合初学Open的小白 适合想要学习OpenGL中uniform的人 本篇需要什么 对C语法有简单认知 对OpenGL有简单认知 最好是有OpenGL超级宝典蓝宝书 依赖Visual Studio编辑器 本篇的特色 …...

数据存储技术复习(四)未完

1.什么是NAS。一般用途服务器与NAS设备之间有何不同。NAS是一个基于IP的专用高性能文件共享和存储设备。—般用途服务器可用于托管任何应用程序,因为它运行的是一般用途操作系统NAS设备专用于文件服务。它具有专门的操作系统,专用于通过使用行业标准协议…...

Rust编码的信息窃取恶意软件源代码公布,专家警告已被利用

黑客论坛上发布了一个 用Rust编码的信息窃取恶意软件源代码 ,安全分析师警告,该恶意软件已被积极用于攻击。 该恶意软件的开发者称,仅用6个小时就开发完成,相当隐蔽, VirusTotal的检测率约为22% 。 恶意软件开发者在…...

diffusers编写自己的推理管道

英文文献:Stable Diffusion with 🧨 Diffusers 编写自己的推理管道 最后,我们展示了如何使用diffusers. 编写自定义推理管道是对diffusers库的高级使用,可用于切换某些组件,例如上面解释的 VAE 或调度程序。 例如&a…...

计算机操作系统 左万利 第二章课后习题答案

计算机操作系统 左万利 第二章课后习题答案 1、为何引进多道程序设计,在多道程序设计中,内存中作业的道数是否越多越好?说明原因。 引入多道程序设计技术是为了提高计算机系统资源的利用率。在多道程序系统中,内存中作业的道数并…...

CODESYS开发教程10-文件读写(SysFile库)

今天继续我们的小白教程,老鸟就不要在这浪费时间了😊。 前面一期我们介绍了CODESYS的文件操作库CAA File。这一期主要介绍CODESYS的SysFile库所包含的文件读写功能块,主要包括文件路径、名称、大小的获取以及文件的创建、打开、读、写、拷贝…...

Linux安装redis

Linux安装redis一.下载二.解压配置1.创建文件夹2.上传文件3.解压4.编译配置三.启动测试1.启动2.防火墙配置3.测试四.设置开机自启1.配置脚本2.添加服务3.测试一.下载 redis官网:https://redis.io/ redis官方下载地址:http://download.redis.io/releases…...

计算机组成与体系结构 性能设计 William Stallings 第2章 性能问题

2.1 优化性能设计例如,当前需要微处理器强大功能的桌面应用程序包括:图像处理、三维渲染、语音识别、视频会议、多媒体创作、文件的声音和视频注释、仿真建模从计算机组成与体系结构的角度来看,一方面,现代计算机的基本组成与50多…...

anaconda详细介绍、安装及使用(python)

anaconda详细介绍、安装及使用1 介绍1.1 简介1.2 特点1.3 版本下载2 Anaconda管理Python包命令3 安装3.1 windows安装4 操作4.1 Conda 操作4.2 Anaconda Navigator 操作4.3 Spyder 操作4.4 Jupyter Notebook 操作5 示例参考1 介绍 1.1 简介 Anaconda是用于科学计算&#xff08…...

雅思经验(6)

反正我是希望遇到的雅思听力section 4.里面填空的地方多一些,之后单选的部分少一些。练了一下剑9 test3 的section 4,感觉还是不难的,都是在复现,而且绕的弯子也不是很多。本次考试的目标就是先弄一个六分,也就是说&am…...

CentOS9源码编译libvirtd工具

卸载原有版本libvirt [rootcentos9 ~]# yum remove libvirt Centos9配置网络源 [rootcentos9 ~]# dnf config-manager --set-enabled crb [rootcentos9 ~]# dnf install epel-release epel-next-release 安装依赖包 [rootcentos9 ~]# yum install -y libtirpc-devel libxml2-de…...

搭建内网穿透

文章目录摘要npsfrp服务提供商摘要 内网穿透是一种方便的技术,可以让用户随时随地访问内网设备。有两种方式可以使用内网穿透:自己搭建,使用nps/frps软件;购买服务,快速享受内网穿透带来的便利。 nps 内网穿透。参考…...

vue3组件库项目学习笔记(八):Git 使用总结

目前组件库的开发已经接近尾声,因为这次是使用 git 进行协作的开发模式,在团队协作的时候遇到很多的问题,开发过程中发现小伙伴们对于 git 的使用还不是很熟练,这里就简单总结一下常用的 git 的操作,大致有&#xff1a…...

ISO7320FCQDRQ1数字隔离器LMG1025QDEETQ1半桥GaN驱动器

1、数字隔离器 DGTL ISO 3000VRMS 2CH 8SOIC型号:ISO7320FCQDRQ1批次:新技术:容性耦合类型:通用隔离式电源:无通道数:2输入 - 侧 1/侧 2:2/0通道类型:单向电压 - 隔离:30…...

openmmlab 语义分割算法基础

本文是openmmlab AI实战营的第六次课程的笔记,以下是我比较关注的部分。简要介绍语义分割:如下图,左边原图,右边语义分割图,对每个像数进行分类应用语义分割在个各种场景下都非常重要,特别是在自动驾驶和医…...

2023年深圳/东莞/惠州CPDA数据分析师认证报名入口

CPDA数据分析师认证是中国大数据领域有一定权威度的中高端人才认证,它不仅是中国较早大数据专业技术人才认证、更是中国大数据时代先行者,具有广泛的社会认知度和权威性。 无论是地方政府引进人才、公务员报考、各大企业选聘人才,还是招投标加…...

RabbitMQ-客户端源码之AMQChannel

AMQChannel是一个抽象类,是ChannelN的父类。其中包含唯一的抽象方法: /*** Protected API - called by nextCommand to check possibly handle an incoming Command before it is returned to the caller of nextCommand. If this method* returns true…...

注意力机制(SE,ECA,CBAM) Pytorch代码

注意力机制1 SENet2 ECANet3 CBAM3.1 通道注意力3.2 空间注意力3.3 CBAM4 展示网络层具体信息1 SENet SE注意力机制(Squeeze-and-Excitation Networks):是一种通道类型的注意力机制,就是在通道维度上增加注意力机制,主要内容是是…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...