借助ChatGPT使用Pandas实现Excel数据汇总
一、问题的提出
现在有如下一个Excel表:

上述Excel表中8万多条数据,记录的都是三年以来花菜类的销量,现在要求按月汇总实现统计每个月花菜类的销量总和,如果使用Python的话要给出代码。
二、问题的解决
1.首先可以用透视表的方法解决这个问题,可能相对简单一些。采用透视表的话,我们根据ChatGPT的回答,可以采用下面的方法:

2. 然后就是采用python中的pandas来解决。这里面涉及到Excel表的读取、清洗、汇总、统计,再写入到Excel表。过分析,借助于ChatGPT我写了以下代码。如果要想使生成的代码更加准确,可以把部分Excel表的内容复制给ChatGPT对话框里,然后让它学习,并根据我们给出的指令写出Python代码就可以。

有时,ChatGPT给出代码可能无法运行,而且报错的可能性很大,这时,我们就把bug信息再回复给它,甚至一句话都不要说,它给你寻找解决办法,并且把最后的修改代码返回来。

多数情况下的问题原因是我们的描述不够清楚,造成ChatGPT在理解上有误。这时还要继续追问,对代码继续进行修正。比如我第一次提问时,让它汇总月度总销量,但是后来发现客户要求的是汇总三年中每一个月份的销量,这就要对它进一步提问,让它对已经生成的代码进行修改:

三、代码展示
最终,我经过调试、修改、增添写入Excel表的功能,最终形成以下带有注释的代码。
import pandas as pd
#读取Excel,以第三行为标题
df = pd.read_excel("花菜类.xlsx",header=2)#找到不规则日期所在行
irregular_date_rows = df[~df['销售日期'].str.match('\d{4}-\d{2}-\d{2}', na=True)]#print("不规则日期所在行:",irregular_date_rows)# 删除不规则日期的行
df = df.drop(irregular_date_rows.index)# 转化日期格式
df['销售日期'] = pd.to_datetime(df['销售日期'])# 创建一个新列 '销售月份',用于存储销售日期的月份信息
df['销售月份'] = df['销售日期'].dt.month
df['销售年份'] = df['销售日期'].dt.year#使用 groupby 和 sum 计算每个月的销售量总和
#monthly_sales = df.groupby('销售月份')['求和项:销量(千克)'].sum()#使用 groupby 和 sum 计算每年每个月的销售量总和
monthly_sales = df.groupby(['销售年份', '销售月份'])['求和项:销量(千克)'].sum()# 打印结果 monthly_sales
monthly_sales.to_excel("求和项.xlsx")
下面是统计后的结果:

四、学后反思
1. ChatGPT解决Excel问题可以直接贴表格,给的代码不一定能用,关键是提问时表述一定要问清楚。如果报错,就让它继续排bug,如果要修改就可以利用它的上下文功能继续给它指令,让它添加功能。
2. Python和ChatGPT为解决现实的统计问题提供了多元的方法,比如这个8万多条记录如果用Python可能不到十秒就解决了所有的问题,非常的快捷和方便。
相关文章:
借助ChatGPT使用Pandas实现Excel数据汇总
一、问题的提出 现在有如下一个Excel表: 上述Excel表中8万多条数据,记录的都是三年以来花菜类的销量,现在要求按月汇总实现统计每个月花菜类的销量总和,如果使用Python的话要给出代码。 二、问题的解决 1.首先可以用透视表的方…...
[学习笔记]PageRank算法
参考资料:改变世界的谷歌PageRank算法 pagerank算法用于计算节点重要度 思想 如果网页被更多的入度(被引用),则网页更重要。 被重要网站引用比被普通网站引用更加凸显重要性。 所以考虑一个网站是否重要,需要看引用它的网站是否重要&#…...
【洛谷算法题】P5704-字母转换【入门1顺序结构】
👨💻博客主页:花无缺 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5704-字母转换【入门1顺序结构】🌏题目描述🌏输入格式&a…...
Pytorch——查找、替换module相关操作
nn.Module类可用操作 1. model.named_parameters() # 遍历模型的所有参数并打印它们的名称和形状 for name, param in model.named_parameters():print(f"Parameter Name: {name}, Parameter Shape: {param.shape}")输出示例: Parameter Name: conv1.w…...
组件安全以及漏洞复现
组件安全 1. 概述 A9:2017-使⽤含有已知漏洞的组件 A06:2021-Vulnerable and Outdated Components 组件(例如:库、框架和其他软件模块)拥有和应用程序相同的权限。如果应用程序中含有已知漏洞的组件被攻击者利用,可能会造成…...
人工智能安全-4-小样本问题
0 提纲 小样本学习问题数据增强基于模型的小样本学习基于算法的小样本学习相关资源1 小样本学习问题 在小样本监督分类中,通常将问题表述为 N-way-K-shot分类, 当K = 1,称为one-shot learning;当K = 0时,成为zero-shot learning(ZSL)。ZSL就要求学习的问题具备充足的先…...
iOS 17中的Safari配置文件改变了游戏规则,那么如何设置呢
Safari在iOS 17中最大的升级是浏览配置文件——能够在一个应用程序中创建单独的选项卡和书签组。这些也可以跟随你的iPad和Mac,但在本指南中,我们将向你展示如何使用运行iOS 17的iPhone。 你可能有点困惑,为什么Safari中没有明显的位置可以添…...
AC自动机小结
AC自动机是一种多模匹配算法。 常见操作 查询一个串的子串 任何一个串的子串都可以表示成他的一个前缀的后缀 他的前缀可以在Trie树上查询 后缀相当于其在fail树上的所有祖先 例1 : HDU4117 接上。首先AC自动机要学会离线。 对于每个点查询祖先复杂度很大。…...
【C++】构造函数分类 ③ ( 调用有参构造函数的方法 | 括号法 | 等号法 )
文章目录 一、在不同的内存中创建类的实例对象1、括号法调用构造函数2、等号法调用构造函数 二、完整代码示例 一、在不同的内存中创建类的实例对象 在上一篇博客 【C】构造函数分类 ② ( 在不同的内存中创建类的实例对象 | 栈内存中创建实例对象 | new 关键字创建对象 ) 中 , …...
uni-app 之 uni.request 网络请求API接口
uni-app 之 uni.request 网络请求API接口 image.png <template><!-- vue2的<template>里必须要有一个盒子,不能有两个,这里的盒子就是 view--><view>--- uni.request 网络请求API接口 ---<view><!-- 免费的测试接口 --…...
代码随想录33|509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯, 34. 在排序数组中查找元素的第一个和最后一个位置
509. 斐波那契数 链接地址 class Solution { public:int fib(int n) {if (n < 1) return n;vector<int> dp(n 1);dp[0] 0;dp[1] 1;for (int i 2; i < n 1; i) {dp[i] dp[i - 1] dp[i - 2];}return dp[n];} };70. 爬楼梯 链接地址 class Solution { public…...
什么是Executors框架?
Executors 是 Java 标准库中的一个工具类,位于 java.util.concurrent 包中,用于创建和管理线程池。它提供了一组静态工厂方法,用于快速创建不同类型的线程池。Executors 框架的目标是使线程池的创建和管理更加简单和方便。 以下是一些 Executors 框架的常用工厂方法和线程池…...
【kafka】kafka单节点/集群搭建
概述 本章节将分享不同版本的kafka单节点模式和集群模式搭建。 在kafka2.8版本之前,需要依赖zookeeper服务,而在kafka2.8版本(包括)之后,可以不在依赖zookeeper服务。本章节将分kafka2.8版本之前的版本和之后的版本分…...
如何进行机器学习
进行机器学习主要包含以下步骤: 获取数据:首先需要获取用于学习的数据,数据的质量和数量都会影响机器学习的效果。如果自己的数据量较少,可以尝试在网上寻找公开数据集进行训练,然后使用自己的数据进行微调。另一种方…...
Vue项目使用axios配置请求拦截和响应拦截以及判断请求超时处理提示
哈喽大家好啊,最近做Vue项目看到axios axios官网:起步 | Axios 中文文档 | Axios 中文网 (axios-http.cn) 重要点: axios是基于Promise封装的 axios能拦截请求和响应 axios能自动转换成json数据 等等 安装: $ npm i…...
《DevOps实践指南》- 读书笔记(四)
DevOps实践指南 Part 3 第一步 :流动的技术实践11. 应用和实践持续集成11.1 小批量开发与大批量合并11.2 应用基于主干的开发实践11.3 小结 12. 自动化和低风险发布12.1 自动化部署流程12.1.1 应用自动化的自助式部署12.1.2 在部署流水线中集成代码部署 12.2 将部署…...
盲打键盘的正确指法指南
简介 很多打字初学者,并不了解打字的正确指法规范,很容易出现只用两根手指交替按压键盘的“二指禅”情况。虽然这样也能实现打字,但是效率极低。本文将简单介绍盲打键盘的正确指法,以便大家在后续的学习和工作中能够提高工作效率…...
【MySQL】索引 详解
索引 详解 一. 概念二. 作用三. 使用场景四. 操作五. 索引背后的数据结构B-树B树聚簇索引与非聚簇索引 一. 概念 索引是一种特殊的文件,包含着对数据表里所有记录的引用指针。可以对表中的一列或多列创建索引,并指定索引的类型,各类索引有各…...
怎么通过ip地址连接共享打印机
在现代办公环境中,共享打印机已成为一种常见的需求。通过共享打印机,多个用户可以在网络上共享同一台打印机,从而提高工作效率并减少设备成本。下面虎观代理小二二将介绍如何通过IP地址连接共享打印机。 确定打印机的IP地址 首先࿰…...
迅为i.MX8mm小尺寸商业级/工业级核心板
尺寸: 50mm*50mm CPU: NXP i.MX8M Mini 主频: 1.8GHz 架构: 四核Cortex-A53,单核Cortex-M4 PMIC: PCA9450A电源管理PCA9450A电源管理NXP全新研制配,iMX8M的电源管理芯片有六个降压稳压器、五…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
