当前位置: 首页 > news >正文

代码随想录算法训练营Day56 || ● 583. 两个字符串的删除操作 ● 72. 编辑距离

今天接触到了真正的距离,但可以通过增删改操作来逼近。

问题1:583. 两个字符串的删除操作 - 力扣(LeetCode)

给定两个单词 word1 和 word2 ,返回使得 word1 和  word2 相同所需的最小步数

每步 可以删除任意一个字符串中的一个字符。

思路:该题关键在于理解删除,删除操作即多走一步,由之前的状态进行推导。首先dp[i][j]还是表示从s[i]到t[j]需要的步数,初始化时是从0到s[i]所需删除元素,故为i。通过观察易发现dp可由dp[i-1]j-1],dp[i-1][j],p[i][j-1]得出,代码如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1));for(int i = 0;i <= word1.size();i++) dp[i][0] = i;for(int j = 0;j <= word2.size();j++) dp[0][j] = j;for(int i = 1; i <= word1.size();i++){for(int j = 1;j <= word2.size();j++){if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1];else dp[i][j] = min(dp[i][j-1]+1,dp[i-1][j]+1);}}return dp[word1.size()][word2.size()]; }};

问题2:72. 编辑距离 - 力扣(LeetCode)

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

思路:该题一上来我就去寻找规律,并没有尝试去真正理解增删改操作怎么去替代,并且在绘制例子矩阵时也较为粗心,导致最后找出来的规律是错误的。其实这类题目并没有什么套路,想想怎样将题目允许的变化做相应操作即可,具体代码如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1));for(int i = 0;i < word1.size();i++) dp[i][0] = i;for(int j = 0;j <= word2.size();j++) dp[0][j] = j;for(int i = 1;i <= word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1];else dp[i][j] = min({dp[i][j-1],dp[i-1][j],dp[i-1][j-1]}) + 1;}}return dp[word1.size()][word2.size()];}
};

相关文章:

代码随想录算法训练营Day56 || ● 583. 两个字符串的删除操作 ● 72. 编辑距离

今天接触到了真正的距离&#xff0c;但可以通过增删改操作来逼近。 问题1&#xff1a;583. 两个字符串的删除操作 - 力扣&#xff08;LeetCode&#xff09; 给定两个单词 word1 和 word2 &#xff0c;返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字…...

chrome_elf.dll丢失怎么办?修复chrome_elf.dll文件的方法

Chrome是目前最受欢迎的网络浏览器之一&#xff0c;然而有时用户可能会遇到Chrome_elf.dll丢失的问题。该DLL文件是Chrome浏览器的一个重要组成部分&#xff0c;负责启动和管理程序的各种功能。当Chrome_elf.dll丢失时&#xff0c;用户可能无法正常启动Chrome或执行某些功能。本…...

代码随想录32|738.单调递增的数字,968.监控二叉树,56. 合并区间

738.单调递增的数字 链接地址 class Solution { public:int monotoneIncreasingDigits(int n) {string str to_string(n);int flag str.size();for (int i str.size() - 1; i > 0; i--) {if (str[i] < str[i - 1]) {str[i - 1] - 1;flag i;}}for (int j flag; j <…...

BIO NIO AIO演变

Netty是一个提供异步事件驱动的网络应用框架&#xff0c;用以快速开发高性能、高可靠的网络服务器和客户端程序。Netty简化了网络程序的开发&#xff0c;是很多框架和公司都在使用的技术。 Netty并非横空出世&#xff0c;它是在BIO&#xff0c;NIO&#xff0c;AIO演变中的产物…...

JVM GC垃圾回收

一、GC垃圾回收算法 标记-清除算法 算法分为“标记”和“清除”阶段&#xff1a;标记存活的对象&#xff0c; 统一回收所有未被标记的对象(一般选择这种)&#xff1b;也可以反过来&#xff0c;标记出所有需要回收的对象&#xff0c;在标记完成后统一回收所有被标记的对象 。它…...

【数据结构】队列知识点总结--定义;基本操作;队列的顺序实现;链式存储;双端队列;循环队列

欢迎各位看官^_^ 目录 1.队列的定义 2.队列的基本操作 2.1初始化队列 2.2判断队列是否为空 2.3判断队列是否已满 2.4入队 2.5出队 2.6完整代码 3.队列的顺序实现 4.队列的链式存储 5.双端队列 6.循环队列 1.队列的定义 队列&#xff08;Queue&#xff09;是一种先…...

嵌入式学习之链表

对于链表&#xff0c;要重点掌握链表和数组区别和实现&#xff0c;链表静态添加和动态遍历&#xff0c;链表中pointpoint-next,链表节点个数的查找&#xff0c;以及链表从指定节点后方插入新节点的知识。...

静态代理和动态代理笔记

总体分为: 1.静态代理: 代理类和被代理类需要实现同一个接口.在代理类中初始化被代理类对象.在代理类的方法中调 用被代理类的方法.可以选择性的在该方法执行前后增加功能或者控制访问 2.动态代理: 在程序执行过程中,实用JDK的反射机制,创建代理对象,并动态的指定要…...

[SM6225][Android13]user版本默认允许root和remount

开发平台基本信息 芯片: 高通SM6225版本: Android 13kernel: msm-5.15 问题描述 刚刚从Framework踏入性能的小殿堂&#xff0c;User版本默认是不会开启root权限的&#xff0c;而且一般调试需要设置一下CPU GPU DDR performance模式或者修改一些schedule util等调核调频节点去…...

pyinstaller打包exe,使用wexpect的问题

参考github首先打包wexpect 1.进入wexpect目录执行 pyinstaller __main__.py -n wexpect 会生成dist文件夹 2.python代码A.py中使用wexpect&#xff0c;注意wexpect.spawn前后必须按照下面添加代码 import sys,os,wexpect #spawn前 real_executable sys.executable try:if sy…...

OpenCV(三十三):计算轮廓面积与轮廓长度

1.介绍轮廓面积与轮廓长度 轮廓面积&#xff08;Contour Area&#xff09;是指轮廓所包围的区域的总面积。通常情况下&#xff0c;轮廓面积的单位是像素的平方。 轮廓长度&#xff08;Contour Length&#xff09;又称周长&#xff08;Perimeter&#xff09;&#xff0c;表示轮廓…...

9.11作业

实现一个对数组求和的函数&#xff0c;数组通过实参传递给函数 sum0 arr(11 22 33 44 55) Sum() {for i in ${arr[*]}do$((sumi))donereturn $sum } Sum ${arr[*]} var$? echo $var写一个函数&#xff0c;输出当前用户的uid和gid&#xff0c;并使用变量接收结果 Sum() {aid -…...

AI伦理与未来社会:探讨人工智能的道德挑战与机会

引言 引出AI伦理和社会影响的主题&#xff0c;强调AI的快速发展和广泛应用。 概述博客的主要内容&#xff1a;探讨AI的伦理挑战以及它对社会的影响。 第一部分&#xff1a;AI的伦理挑战 算法偏见&#xff1a; 解释什么是算法偏见&#xff0c;以及它为何在AI中成为一个重要问题。…...

Android窗口层级(Window Type)分析

前言 Android的窗口Window分为三种类型&#xff1a; 应用Window&#xff0c;比如Activity、Dialog&#xff1b;子Window&#xff0c;比如PopupWindow&#xff1b;系统Window&#xff0c;比如Toast、系统状态栏、导航栏等等。 应用Window的Z-Ordered最低&#xff0c;就是在系…...

微信小程序基础加强总结

本篇文章给大家带来了关于微信小程序的相关问题&#xff0c;其中主要介绍了一些基础内容&#xff0c;包括了自定义组件、样式隔离、数据、方法和属性等等内容&#xff0c;下面一起来看一下&#xff0c;希望对大家有帮助。 1、自定义组件 1.1、创建组件 在项目的根目录中&…...

【JAVA - List】差集removeAll() 四种方法实现与优化

一、场景&#xff1a; 二、结论&#xff1a; 1. 四种方法耗时 三、代码&#xff1a; 一、场景&#xff1a; 求差集 List1 - Lsit2 二、结论&#xff1a; 1. 四种方法耗时 初始条件方法名方法思路耗时 List1.size319418 List2.size284900 List..removeAll(Lsit2)1036987ms…...

sql注入基本概念

死在山野的风里&#xff0c;活在自由的梦里 sql注入基本概念 MYSQL基本语法union合并查询2个特性&#xff1a;order by 排序三个重要的信息 Sql Server MYSQL 基本语法 登录 mysql -h ip -u user -p pass基本操作 show databases; 查看数据库crea…...

AIGC系列:1.chatgpt可以用来做哪些事情?

上图的意思&#xff1a;神器轩辕剑 那么&#xff0c;在现在AI盛行的信息时代&#xff0c; 你是否知道如何获得和利用ChatGPT这一把轩辕剑来提升你的攻击力和生存能力呢&#xff1f; 故事 程序员小张&#xff1a; 刚毕业&#xff0c;参加工作1年左右&#xff0c;日常工作是C…...

End-to-End Object Detection with Transformers(论文解析)

End-to-End Object Detection with Transformers 摘要介绍相关工作2.1 集合预测2.2 transformer和并行解码2.3 目标检测 3 DETR模型3.1 目标检测集设置预测损失3.2 DETR架构 摘要 我们提出了一种将目标检测视为直接集合预测问题的新方法。我们的方法简化了检测流程&#xff0c…...

生成多样、真实的评论(2019 IEEE International Conference on Big Data )

论文题目&#xff08;Title&#xff09;&#xff1a;Learning to Generate Diverse and Authentic Reviews via an Encoder-Decoder Model with Transformer and GRU 研究问题&#xff08;Question&#xff09;&#xff1a;评论生成&#xff0c;由上下文评论->生成评论 研…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

Redis上篇--知识点总结

Redis上篇–解析 本文大部分知识整理自网上&#xff0c;在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库&#xff0c;Redis 的键值对中的 key 就是字符串对象&#xff0c;而 val…...