数学建模--退火算法求解最值的Python实现
目录
1.算法流程简介
2.算法核心代码
3.算法效果展示
1.算法流程简介
"""
1.设定退火算法的基础参数
2.设定需要优化的函数,求解该函数的最小值/最大值
3.进行退火过程,随机产生退火解并且纠正,直到冷却
4.绘制可视化图片进行了解退火整体过程
"""
2.算法核心代码
#利用退火算法求解函数的极值(优化问题)
import numpy as np
from random import random
import random
import math
import matplotlib.pyplot as plt
#设定退火算法的基础参数
x_min,x_max=(-3,3)#x的取值范围
alpha=0.99#降温系数为0.99
bg_temp=100#起始温度
ed_temp=0.01#最终温度(可设可不设)
cycle_number=500#循环次数
#设定需要优化的函数,求解该函数的最小值
"""
需要运用的化直接修改函数即可.
不过需要注意定义域的问题,主动修改一下定义域就行
"""
def opt_fun(x):y=11*np.sin(2*x)+7*np.cos(5*x)return y
#由于没有具体的数据,我们直接随机设置值就行随机产生初始值#随机产生本次退火解
def new_result(x):x1=x+bg_temp*random.uniform(-1,1)#退火解的合理性检查并且纠正:if x_min<=x1<=x_max:return x1elif x1<x_min:add_min=random.uniform(-1,1)return add_min*x_min+(1-add_min)*xelse:add_max=random.uniform(-1,1)return add_max*x_max+(1-add_max)*x
def draw_picture(x):plt.cla()#绘图的时候这里可以进行修改#注意这里y的取值范围[-25,25]要大体预估一下plt.axis([x_min-1,x_max+1,-25,25])m=np.arange(x_min,x_max,0.0001)plt.plot(m,opt_fun(m),color='red')plt.plot(x,opt_fun(x),marker='*',color='b',markersize='8')plt.title('Current Temperature={}'.format(T))plt.pause(0.1)#设定接受概率函数
def p(x,x1):return math.exp(-abs(opt_fun(x)-opt_fun(x1))/T)#循环退火过程,直到冷却求出最优解
def Annealing_cycle():global Tcount_number=0T=bg_tempx=random.uniform(x_min,x_max)print("*******************************************************************************************************************")while T>ed_temp:draw_picture(x)for i in range(cycle_number):x1=new_result(x)#求解最小值的过程if opt_fun(x)>=opt_fun(x1):x=x1else:if random.random()<=p(x,x1):x=x1else:continueT=T*alphacount_number=count_number+1print("当前执行第{}".format(count_number),"次退火过程"," 当前退火温度为:{}".format(T)," 当前最优值:{}".format(opt_fun(x)))print("*******************************************************************************************************************")print("本次退火优化过程共执行{}".format(count_number),"次求得的最优解为:{}".format(opt_fun(x)))print("*******************************************************************************************************************")
Annealing_cycle()
3.算法效果展示

相关文章:
数学建模--退火算法求解最值的Python实现
目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 """ 1.设定退火算法的基础参数 2.设定需要优化的函数,求解该函数的最小值/最大值 3.进行退火过程,随机产生退火解并且纠正,直到冷却 4.绘制可视化图片进行了解退火整体过程 &…...
地理地形sdk:Tatuk GIS Developer Kernel for .NET Crack
Tatuk GIS Developer Kernel for .NET 是一个变体,它是受控代码和 .NET GIS SDK,用于为用户 Windows 操作系统创建专业 GIS 软件的过程。它被认为是一个完全针对Win Forms 的.NET CIL,WPF 框架是针对C# 以及VB.NET、VC、Oxy 以及最终与.NET 的…...
Day_81-87 CNN卷积神经网络
目录 一. CNN卷积神经网络与传统神经网络的不同 1. 模型图 2. 参数分布情况 3. 卷积神经网络和传统神经网络的层次结构 4. 传统神经网络的缺点: 二. CNN的基本操作 1. 卷积 2. 池化 三. CNN实现过程 1. 算法流程图 2. 输入层 3. 卷积层 4. 激活层 5. 池化层 6. 全连…...
关于mybatisplus报错:Property ‘sqlSessionFactory‘ or ‘sqlSessionTemplat的问题
可能是mybatisplus版本不兼容的问题,我之前用的3.4.0,springboot版本是3.1.3,maven版本是3.8.8,运行的时候报了这个错。现在修改了mybatisplus的版本,如下图: 这样就不报错了。 大家可以在这里找合适的my…...
Spring AOP基础动态代理基于JDK动态代理实现
目录 1. 预备知识-动态代理 1.1 什么是动态代理 1.2 动态代理的优势 1.3 基于JDK动态代理实现 2. AOP 2.1 基本概念 2.2 AOP带来的好处 3. Spring AOP 3.1 前置通知 3.2 后置通知 3.3 环绕通知 3.4 异常通知 3.5 适配器 1. 预备知识-动态代理 1.1 什么是动态代理…...
第一章 计算机系统概述 五、中断和异常、系统调用
目录 一、中断的作用 二、中断的类型 1、内中断(异常) 2、外中断 三、中断机制的基本原理 四、系统调用 1、定义: 2、与库函数的区别 3、按功能分类 4、作用 一、中断的作用 1、“中断”是让操作系统内核夺回CPU使用权的唯一途径 …...
【C语言】文件操作(上)
一.什么是文件 文件是磁盘上的文件,文件中存放的数据不随程序的退出而销毁. 二.文件的打开与关闭 1.文件指针 每个被使用的文件都在内存中开辟了一个相应的文件信息区,用来存放文件的相关信息(如文件的名字,文件状态及文件当前的位置等&…...
【Linux】让笔记本发挥余热,Ubuntu20.04设置WiFi热点
Ubuntu20.04设置WiFi热点 由于卧室距离客厅较远,wifi信号太弱,体验极差。鉴于卧室的笔记本电脑是通过网线连接的客厅路由器,因此考虑将这台老破笔记本作为“路由器”,以便发挥它的余热。实验证明,上网速度提升数十倍&a…...
【云平台】遥感地信云平台收录
文章目录 国内1 航天宏图PIE-Engine2 商汤科技3 AI Earth4 EarthDataMiner国外结语国内 1 航天宏图PIE-Engine https://engine.piesat.cn/live-show-list 在这里插入图片描述 2 商汤科技 https://senseearth-cloud.com/map 3 AI Earth https://engine-aiearth.aliyun.com…...
23种设计模式之---单例模式
闲来无事学一下设计模式,希望这23种可以一直更下去,什么时候能更完呢,也许一个月,也许一年,也许断更 设计模式六大原则 本文是23篇的第一篇,在学习设计模式之前,你需要了解下六大原则。 1、开…...
蓝桥杯官网练习题(纸牌三角形)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 A,2,3,4,5,6,7,8,9 共 99 张纸牌排成一个正三角形(A 按 1 计算)。要求每个边的和相等。 下图就是一种排法。 这样的排法可能会有很多。 如果…...
一辆新能源汽车的诞生之旅:比亚迪常州工厂探营
作为在新能源汽车领域首屈一指的国产品牌,比亚迪近年来可以说是捷报频传,高奏凯歌。 以比亚迪常州工厂为例,据介绍该工厂当初规划设计时定下的生产目标,是年产量能够达到20万辆。然而在2023年上半年,该工厂光是主要销往…...
【算法专题突破】双指针 - 最大连续1的个数 III(11)
目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后: 1. 题目解析 题目链接:1004. 最大连续1的个数 III - 力扣(Leetcode) 这道题不难理解,其实就是求出最长的连续是1的子数组, 但是,他支…...
java实现备忘录模式
备忘录模式是一种行为设计模式,它允许您捕获一个对象的内部状态,并在稍后的时间点将其恢复。这对于需要撤销操作或恢复到先前状态的应用程序非常有用。以下是在 Java 中实现备忘录模式的一般步骤: 创建一个原发器类(Originator&am…...
aardio语言的通用数据表维护
import win.ui; /*DSG{{*/ var winform win.form(text"通用数据表维护";right617;bottom427;bgcolor15780518) winform.add( buttonAdd{cls"button";text"增加空行";left469;top40;right564;bottom80;flat1;z2}; buttonDel{cls"button&quo…...
手写RPC框架--7.封装响应
RPC框架-Gitee代码(麻烦点个Starred, 支持一下吧) RPC框架-GitHub代码(麻烦点个Starred, 支持一下吧) 封装响应 封装响应a.封装响应b.请求id生成器(雪花算法)c.抽象序列化d.建立序列化工厂e.hessian的序列化方式(拓展) 封装响应 a.封装响应 在core模块…...
Linux入门教程||Linux系统目录结构
登录系统后,在当前命令窗口下输入命令: ls / 你会看到如下图所示: 树状目录结构: 以下是对这些目录的解释: /bin: bin是Binary的缩写, 这个目录存放着最经常使用的命令。 /boot: 这里存放的是启动Linux时…...
LeetCode 88. 合并两个有序数组
文章目录 一、题目二、C# 题解 一、题目 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。 注意&a…...
C语言实现扫雷小游戏
1.首先扫雷游戏要存储布置好的雷信息,需要一个二维数组 不是雷放* 雷:# 不是雷:0 雷:1 2. 给2个二维数组 9*9 一个存放雷的信息,一个存放布置好雷的信息 3.为了防止在统计坐标周围的…...
【linux基础(五)】Linux中的开发工具(上)---yum和vim
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:Linux从入门到开通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学更多操作系统知识 🔝🔝 Linux中的开发工具 1. 前言2.…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验
2024年初,人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目(一款融合大型语言模型能力的云端AI编程IDE)时,技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力,TRAE在WayToAGI等…...
