当前位置: 首页 > news >正文

想要精通算法和SQL的成长之路 - 受限条件下可到达节点的数目

想要精通算法和SQL的成长之路 - 受限条件下可到达节点的数目

  • 前言
  • 一. 相交链表(邻接图和DFS)

前言

想要精通算法和SQL的成长之路 - 系列导航

一. 相交链表(邻接图和DFS)

原题链接
在这里插入图片描述

public int reachableNodes(int n, int[][] edges, int[] restricted) {
}

我们读一下题目,我们总结几个核心的点:

  1. 无向图。
  2. 受限节点。
  3. 题目用一个二维数组代表图。

针对第一个点和第三个点:我们用何种方式通过二维数组来构建出一个无向图?

使用邻接图。在Java当中,邻接图可以用下面一个模板来完成:

List<Integer>[] adj = new List[n];
// 初始化每个数组
for (int i = 0; i < n; i++) {adj[i] = new ArrayList<>();
}
for (int[] edge : edges) {adj[前继节点].add(后继节点);
}

那么由于本题目又特意声明了它是一个无向图,我们前后顺序换一下再存储一次即可:

adj[前继节点].add(后继节点);
adj[后继节点].add(前继节点);

针对第二点:受限节点。我们用一个一维数组,代表每个元素是否受限,下标即是对应的元素值:

boolean[] limits = new boolean[n];
for (int i : restricted) {limits[i] = true;
}

有了这些数据,我们就可以通过DFS去递归遍历这颗树:

  1. 我们指定对应的元素 0 作为根节点,向后继节点递归。
  2. 同时因为无向的关系,我们在递归节点的时候,需要做判断,当前节点并不是父节点,满足条件才可往深层递归。否则就会出现死循环。

例如:以上图的案例,最终的无向图数据部分如下:

  • 0–>1,4,5。
  • 1->0,1,3

死循环逻辑如下:

  • 第一层:倘若当前节点为1的时候,根据顺序深层递归。递归节点0。
  • 第二层:当前遍历节点为0,发现0的相邻节点有1,开始递归节点1。回到第一步。
  • 第三层…

因此我们在dfs递归的时候需要有两个参数:

  1. 当前节点。
  2. 当前节点的父节点。

同时我们用一个全局变量count代表递归的数量(即是题目返回要求)

void dfs(int root, int pre) {count++;for (int node : adj[root]) {if (!limits[node] && node != pre) {dfs(node, root);}}
}

最终完整代码如下:

public class Test2368 {int count = 0;List<Integer>[] adj;boolean[] limits;public int reachableNodes(int n, int[][] edges, int[] restricted) {// 邻接图数据构建adj = new List[n];for (int i = 0; i < n; i++) {adj[i] = new ArrayList<>();}for (int[] edge : edges) {adj[edge[0]].add(edge[1]);adj[edge[1]].add(edge[0]);}// 构建受限节点数组limits = new boolean[n];for (int i : restricted) {limits[i] = true;}// 开始递归,从根节点0开始,父节点不存在,我们传一个-1dfs(0, -1);return count;}void dfs(int root, int pre) {count++;// adj[root] 就是与 当前节点 所有的相邻节点for (int node : adj[root]) {// 非受限节点并且当前节点并不是父节点的时候,继续往下递归if (!limits[node] && node != pre) {dfs(node, root);}}}
}

相关文章:

想要精通算法和SQL的成长之路 - 受限条件下可到达节点的数目

想要精通算法和SQL的成长之路 - 受限条件下可到达节点的数目 前言一. 相交链表&#xff08;邻接图和DFS&#xff09; 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 相交链表&#xff08;邻接图和DFS&#xff09; 原题链接 public int reachableNodes(int n, int[][] ed…...

加快项目开发进度常用5种方法

项目进度管理是根据进度目标&#xff0c;制定合理的进度计划&#xff0c;全程监控项目进度的执行情况。这样有利于明确项目目标&#xff0c;协调团队行动&#xff0c;提高开发效率&#xff0c;从而最大化项目利益。而加快项目进度&#xff0c;有利于提高项目整体效率&#xff0…...

leetcode做题笔记136. 只出现一次的数字

给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算法只使用常量额外空间。 思路一&#xff1a;快排&#xff08;…...

vuex 模拟异步调用

在页面中首先定义一个调用vuex异步函数的方法 <el-button click fetchData></el-button> {{asyncData}} vuex 中 const store new Vuex.Store({state: {asyncData: null,},mutations: {SET_ASYNC_DATA(state, data) {state.asyncData data;},},actions: {fe…...

error:Failed building wheel for XXX

解决方案适用于大多数的pip 安装时出现的Failed building wheel for XXX 出现问题 按以往快速安装包的经验&#xff0c;第一反应当然是使用简单又快捷的terminal命令加上镜像&#xff0c;如下&#xff1a; pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple结…...

【linux命令讲解大全】112.Linux 系统管理工具:dpkg-statoverride 和 dstat 的使用介绍

文章目录 dpkg-statoverride补充说明语法选项实例 dstat补充说明下载安装方法一方法二 使用说明语法常用选项实例 从零学 python dpkg-statoverride 在 Debian Linux 中覆盖文件的所有权和模式。 补充说明 dpkg-statoverride 命令用于在 Debian Linux 中覆盖文件的所有权和模…...

ffmpeg草稿

avformat 用于解析容器和协议(protocol)。 avcodec 用于编码和解码基本流(您已经拥有的)。 Qt/C音视频开发44-本地摄像头推流&#xff08;支持分辨率/帧率等设置/实时性极高&#xff09;_feiyangqingyun的博客-CSDN博客 void FFmpegThread::initInputFormat() {//本地摄像头/桌…...

熵 | 无线通信知识

文章目录 一、信息论&#xff08;熵、联合熵、条件熵&#xff09;二、Bernoulli熵三、联合熵和条件熵四、互信息五、相对熵(KL距离)六、微分熵七、最大熵分布常需要的不等式公式 一、信息论&#xff08;熵、联合熵、条件熵&#xff09; 熵定义&#xff1a; H ( X ) E [ − l …...

黑马JVM总结(七)

&#xff08;1&#xff09;StringTable_编译器优化 “a”“b”对应#4&#xff1a;是去常量池中找ab的这个符号 astore 5&#xff1a;是把这个存入编号为5的局部变量 “ab”对应的指令 #4&#xff0c;跟“a”“b”对应#4下面弄是一样的 在执行s3“ab”这行个代码时&#xf…...

Vue3核心语法一

Vue3核心语法一 rectiveshallowReactiverefcomputedwatchwatchEffet 使用Vue3创建项目template中标签可以多个根标签,可以通过setup开启组合式API,组合式API优点可以使相同业务放到一起 rective 定义响应式数据, import { reactive} from "vue";const data reactiv…...

5.11.Webrtc接口的设计原理

在上节课中呢&#xff0c;我向你介绍了web rtc的接口宏&#xff0c;那有很多同学会产生疑问啊&#xff0c;那觉得web rtc为什么要把接口设计的这么复杂&#xff1f;还非要通过宏来实现一个代理类&#xff0c;再通过代理类来调用到web rtc内部。 那为什么要这么设计呢&#xf…...

2022年09月 C/C++(八级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:道路 N个以 1 … N 标号的城市通过单向的道路相连:。每条道路包含两个参数:道路的长度和需要为该路付的通行费(以金币的数目来表示) Bob and Alice 过去住在城市 1.在注意到Alice在他们过去喜欢玩的纸牌游戏中作弊后,Bob和她分手…...

Vue3 监听属性-watch

文章目录 Vue3 监听属性-watch1. 概念2. 实例2.1 通过使用 watch 实现计数器2.2 千米与米之间的换算2.3 异步加载中使用 watch2.4 小计 Vue3 监听属性-watch 1. 概念 Vue3 监听属性 watch&#xff0c;可以通过 watch 来响应数据的变化。 watch 的作用&#xff1a;用于监测响应…...

JWT安全

文章目录 理论知识cookie(放在浏览器)session(放在 服务器)tokenjwt&#xff08;json web token&#xff09;headerpayloadSignatureJWT通信流程 JWT与Token 区别相同点区别 WebGoat靶场--JWT tokens环境启动第四关第五关第七关 属于越权漏洞 理论知识 cookie(放在浏览器) ​…...

LabVIEW利用人工神经网络辅助进行结冰检测

LabVIEW利用人工神经网络辅助进行结冰检测 结冰对各个领域构成重大威胁&#xff0c;包括但不限于航空航天和风力涡轮机行业。在起飞过程中&#xff0c;飞机机翼上轻微积冰会导致升力降低25%。研究报告称&#xff0c;涡轮叶片上的冰堆积可在19个月的运行时间内造成29MWh的功率损…...

Linux安装MySQL8.0

又又又又..Linux装MySQL。 删除原有的MySQL 查看安装的mysql信息&#xff1a;rpm -qa|grep -i mysql 删除mysql相关服务&#xff1a;rpm -e --nodeps 查询mysql遗留文件和依赖信息&#xff1a;find / -name mysql 手动删除mysql配置文件&#xff1a;rm -rf /etc/my.cnf 相关…...

【【萌新编写RISCV之前言CPU的部分介绍.3】】

萌新编写RISCV之前言CPU的部分介绍.3 CPU的数字电路结构实际十分简单&#xff0c;最主要的模块有PC&#xff08;地址生成&#xff09;&#xff0c;ALU&#xff08;运算&#xff09;&#xff0c;Register&#xff08;寄存&#xff09;&#xff0c;Decode&#xff08;译码&#…...

dl_model_param

set_dl_model_param —设置深度学习模型的参数 get_dl_model_param — Return the parameters of a deep learning model 返回深度学习模型的参数 使用read_dl_model读取前一步初始化后的网络模型&#xff0c;得到模型的句柄DLModelHandle。 接着用read_dict读取预处理后的数…...

Android相机调用-CameraX【外接摄像头】【USB摄像头】

Android相机调用有原生的Camera和Camera2&#xff0c;我觉得调用代码都太复杂了&#xff0c;CameraX调用代码简洁很多。 说明文档&#xff1a;https://developer.android.com/jetpack/androidx/releases/camera?hlzh-cn 现有查到的调用资料都不够新&#xff0c;对于外接摄像…...

第一个Java程序

1. 将扩展名.text更改为.java 2.文件夹&#xff08;Hello.java&#xff09;上方输入“cmd空格回车”&#xff08;没有加号&#xff09; 3.在命令提示符内输入“javac空格文件夹名称.java回车” (javac空格Hello.java回车) 执行成功后&#xff0c;文件夹下多一个Hello.class…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

Java数组Arrays操作全攻略

Arrays类的概述 Java中的Arrays类位于java.util包中&#xff0c;提供了一系列静态方法用于操作数组&#xff08;如排序、搜索、填充、比较等&#xff09;。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序&#xff08;sort&#xff09; 对数组进行升序…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译&#xff1a; ### 胃肠道癌症的发病率呈上升趋势&#xff0c;且有年轻化倾向&#xff08;Bray等人&#xff0c;2018&#x…...

ubuntu清理垃圾

windows和ubuntu 双系统&#xff0c;ubuntu 150GB&#xff0c;开发用&#xff0c;基本不装太多软件。但是磁盘基本用完。 1、查看home目录 sudo du -h -d 1 $HOME | grep -v K 上面的命令查看$HOME一级目录大小&#xff0c;发现 .cache 有26GB&#xff0c;.local 有几个GB&am…...