CUDA小白 - NPP(8) 图像处理 Morphological Operations
cuda小白
原始API链接 NPP
GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》
常见的NppStatus,可以看这里。
7 是图像的傅里叶变换,还在学习中
本文主要讲述的是形态学变换
Dilation
膨胀操作(对二值化物体边界点进行扩充,将与物体接触的所有背景点合并到该物体中,使边界向外部扩张。如果两个物体间隔较近,会将两物体连通在一起。)
// 返回mask下的最大像素值作为输出的pixel,如果mask的值为0,则不参与最大值查询
NppStatus nppiDilate_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor);
// 与前一个接口的区别是多了一个borderType的类型指定
/*
NppiBorderType {NPP_BORDER_UNDEFINED,NPP_BORDER_NONE,NPP_BORDER_CONSTANT,NPP_BORDER_REPLICATE,NPP_BORDER_WARP,NPP_BORDER_MIRROR
};
*/
NppStatus nppiDilateBorder_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,NppiSize oSrcSize,NppiPoint oSrcOffset,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor,NppiBorderType eBorderType);
// 特定大小的kernel
NppStatus nppiDilate3x3_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI);
code
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }int main() {std::string directory = "../";cv::Mat image_dog = cv::imread(directory + "dog.png");int image_width = image_dog.cols;int image_height = image_dog.rows;int image_size = image_width * image_height;// =============== device memory ===============// inputuint8_t *in_image;cudaMalloc((void**)&in_image, image_size * 3 * sizeof(uint8_t));cudaMemcpy(in_image, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);// outputuint8_t *out_ptr1, *out_ptr2;cudaMalloc((void**)&out_ptr1, image_size * 3 * sizeof(uint8_t)); // 三通道cudaMalloc((void**)&out_ptr2, image_size * 3 * sizeof(uint8_t)); // 三通道NppiSize in_size;in_size.width = image_width;in_size.height = image_height;NppiRect rc;rc.x = 0;rc.y = 0;rc.width = image_width;rc.height = image_height;int mask_size = 10;cv::Mat mat_mask = cv::Mat::ones(mask_size, mask_size, CV_8UC1);uint8_t *mask;cudaMalloc((void**)&mask, mask_size * mask_size * sizeof(uint8_t));cudaMemcpy(mask, mat_mask.data, mask_size * mask_size * sizeof(uint8_t), cudaMemcpyHostToDevice);cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);NppStatus status;NppiSize npp_mask_size;npp_mask_size.width = mask_size;npp_mask_size.height = mask_size;NppiPoint pt;pt.x = 0;pt.y = 0;// =============== nppiDilate_8u_C3R ===============status = nppiDilate_8u_C3R(in_image, image_width * 3, out_ptr1, image_width * 3, in_size, mask, npp_mask_size, pt);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiDilate_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr1, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "dilate.jpg", out_image);// =============== nppiDilateBorder_8u_C3R ===============NppiPoint src_pt;src_pt.x = 100;src_pt.y = 100;status = nppiDilateBorder_8u_C3R(in_image, image_width * 3, in_size, src_pt, out_ptr2, image_width * 3, in_size, mask, npp_mask_size, pt, NPP_BORDER_REPLICATE);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiDilateBorder_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr2, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "dilate_border.jpg", out_image);// freeCUDA_FREE(in_image)CUDA_FREE(out_ptr1)CUDA_FREE(out_ptr2)
}
make
cmake_minimum_required(VERSION 3.20)
project(test)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")add_executable(test test.cpp)
target_link_libraries(test${OpenCV_LIBS}${CUDA_LIBS}
)
result

注意:
- nppiDilateBorder_8u_C3R 仅支持border的模式为 NPP_BORDER_REPLICATE,其他模式会报错,错误码为-9999。
Erode
腐蚀操作
NppStatus nppiErode_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor);
NppStatus nppiErodeBorder_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,NppiSize oSrcSize,NppiPoint oSrcOffset,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor,NppiBorderType eBorderType);
// 固定大小的Erode
NppStatus nppiErode3x3_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI);
// nppiErode3x3Border_8u_C3R 不详细介绍了
再此使用上一个实验膨胀之后的图像作为腐蚀的输入。
code
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }int main() {std::string directory = "../";cv::Mat image_dog = cv::imread(directory + "dilate.jpg");int image_width = image_dog.cols;int image_height = image_dog.rows;int image_size = image_width * image_height;// =============== device memory ===============// inputuint8_t *in_image;cudaMalloc((void**)&in_image, image_size * 3 * sizeof(uint8_t));cudaMemcpy(in_image, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);// outputuint8_t *out_ptr1, *out_ptr2;cudaMalloc((void**)&out_ptr1, image_size * 3 * sizeof(uint8_t)); // 三通道cudaMalloc((void**)&out_ptr2, image_size * 3 * sizeof(uint8_t)); // 三通道NppiSize in_size;in_size.width = image_width;in_size.height = image_height;NppiRect rc;rc.x = 0;rc.y = 0;rc.width = image_width;rc.height = image_height;int mask_size = 10;cv::Mat mat_mask = cv::Mat::ones(mask_size, mask_size, CV_8UC1);uint8_t *mask;cudaMalloc((void**)&mask, mask_size * mask_size * sizeof(uint8_t));cudaMemcpy(mask, mat_mask.data, mask_size * mask_size * sizeof(uint8_t), cudaMemcpyHostToDevice);cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);NppStatus status;NppiSize npp_mask_size;npp_mask_size.width = mask_size;npp_mask_size.height = mask_size;NppiPoint pt;pt.x = 0;pt.y = 0;// =============== nppiErode_8u_C3R ===============status = nppiErode_8u_C3R(in_image, image_width * 3, out_ptr1, image_width * 3, in_size, mask, npp_mask_size, pt);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiErode_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr1, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "erode.jpg", out_image);// =============== nppiErodeBorder_8u_C3R ===============NppiPoint src_pt;src_pt.x = 100;src_pt.y = 100;status = nppiErodeBorder_8u_C3R(in_image, image_width * 3, in_size, src_pt, out_ptr2, image_width * 3, in_size, mask, npp_mask_size, pt, NPP_BORDER_REPLICATE);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiErodeBorder_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr2, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "erode_border.jpg", out_image);// freeCUDA_FREE(in_image)CUDA_FREE(out_ptr1)CUDA_FREE(out_ptr2)
}
make
cmake_minimum_required(VERSION 3.20)
project(test)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")add_executable(test test.cpp)
target_link_libraries(test${OpenCV_LIBS}${CUDA_LIBS}
)
result

注意点:
- nppiErodeBorder_8u_C3R 仅支持border的模式为 NPP_BORDER_REPLICATE,其他模式会报错,错误码为-9999。
ComplexImageMorphology
复杂图像形态学,暂时不做介绍,后续视情况而定
<<<链接>>>
相关文章:
CUDA小白 - NPP(8) 图像处理 Morphological Operations
cuda小白 原始API链接 NPP GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》 常见的NppStatus…...
java获取音频,文本准转语音时长
jar 以上传到资源中 <dependency><groupId>it.sauronsoftware</groupId><artifactId>jave</artifactId><version>1.0.2</version></dependency> mvn install:install-file -DfileD:\xxx\xxx\jave-1.0.2.jar -DgroupIdit.sauro…...
基于串口通讯的多电机控制技术研究
基于STM32CubeMX生成keil工程 基于proteus 8.7版本进行程序验证 采用了简单的串口通讯协议 基本效果如图 先对电机旋转方向进行指令设置 :221 :320 分别实现对第二个电机正转、第三个电机反转设置 为了方便观测,程序对接受到的串口数据会进行回显。 然后使能电…...
【深入解读Redis系列】(五)Redis中String的认知误区,详解String数据类型
有时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,请认准https://blog.zysicyj.top 首发博客地址 系列文章地址 需求描述 现在假设有这样一个需求,我们要开发一个图像存储系统。要求如下: 该系统能快…...
段指导-示例
RDBMS 19.20 参考文档: Database Administrator’s Guide 19 Managing Space for Schema Objects 19.3.2.4 Running the Segment Advisor Manually 针对表SOE.CUSTOMERS进行段指导 -- 创建段指导 variable id number; begindeclarename varchar2(100);descr …...
LeetCode 面试题 04.02. 最小高度树
文章目录 一、题目二、C# 题解 一、题目 给定一个有序整数数组,元素各不相同且按升序排列,编写一个算法,创建一棵高度最小的二叉搜索树。 点击此处跳转题目。 示例: 给定有序数组: [-10,-3,0,5,9], 一个可能的答案是:[0,-3,9,-10…...
华为云云耀云服务器L实例评测|初始化centos镜像到安装nginx部署前端vue、react项目
文章目录 ⭐前言⭐购买服务器💖 选择centos镜像 ⭐在控制台初始化centos镜像💖配置登录密码 ⭐在webstorm ssh连接 服务器⭐安装nginx💖 wget 下载nginx💖 解压运行 ⭐添加安全组⭐nginx 配置⭐部署vue💖 使用默认的ng…...
python项目制作docker镜像,加装引用模块,部署运行!
一、创建Dockerfile # 基于python:3.10.4版本创建容器 FROM python:3.10.4 # 在容器中创建工作目录 RUN mkdir /app # 将当前Dockerfile目录下的所有文件夹和文件拷贝到容器/app目录下 COPY . /app# 由于python程序用到了requests模块和yaml模块, # python:3.10.4基…...
Redis缓存设计与性能优化
多级缓存架构 缓存设计 缓存穿透 缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。缓存穿透将导致不存在的数据每次请求都要到存储层去查询, 失去…...
免杀对抗-Python-混淆算法+反序列化-打包生成器-Pyinstall
Python-MSF/CS生成shellcode-上线 cs上线 1.生成shellcode-c或者python 2.打开pycharm工具,创建一个py文件,将原生态执行代码复制进去 shellcode执行代码: import ctypesfrom django.contrib.gis import ptr#cs#shellcodebytearray(b"生…...
C#__线程池的简单介绍和使用
/*线程池原理:(有备无患的默认备用后台线程)特点:线程提前建好在线程池;只能用于运行时间较短的线程。*/class Program{static void Main(string[] args){for (int i 0; i < 10; i){ThreadPool.QueueUserWorkItem(Download); …...
安全员(岗位职责)
一、 安全员 是工程项目安全生产、文明施工的直接管理者和责任人,在业务上向 公司 负责; 二、贯彻安全条例和文明施工标准是安全员 工作 准则,执行相关规章、规程是安全员的责任; 三、办理开工前安全监审和安全开工审批,编制项目工程安全监督计划,上报安全措施和分项工程安全施…...
unity 使用声网(Agora)实现语音通话
第一步、先申请一个声网账号 [Agora官网链接](https://console.shengwang.cn/) 第二步在官网创建项目 ,选择无证书模式,证书模式需要tokenh和Appld才能通话 第三步 官网下载SDK 然后导入到unity,也可以直接在unity商店…...
vue2.X 中使用 echarts5.4.0实现项目进度甘特图
vue2.X 中使用 echarts5.4.0实现项目进度甘特图 效果图: 左侧都是名称,上面是时间,当中的内容是日志内容 组件: gantt.vue <template><div id"main" style"width: 100%; height: 100%"></…...
《PostgreSQL与NoSQL:合作与竞争的关系》
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🐅🐾猫头虎建议程序员必备技术栈一览表📖: 🛠️ 全栈技术 Full Stack: 📚…...
【FAQ】视频监控管理平台/视频汇聚平台EasyCVR安全检查相关问题及解决方法3.0
智能视频监控系统/视频云存储/集中存储/视频汇聚平台EasyCVR具备视频融合汇聚能力,作为安防视频监控综合管理平台,它支持多协议接入、多格式视频流分发,视频监控综合管理平台EasyCVR支持海量视频汇聚管理,可应用在多样化的场景上&…...
Java 8 新特性解读及应用实践
Java 8 新特性解读及应用实践 一、简介二、Lambda表达式三、流式编程四、日期/时间API1. 概述2. LocalDate、LocalTime、LocalDateTime等类的使用3. 格式化与解析 五、重复注解和类型注解1. 概念与作用2. 重复注解实例3. 类型注解实例 六、小结回顾 一、简介 Java 8带来了众多…...
C++项目实战——基于多设计模式下的同步异步日志系统-④-日志系统框架设计
文章目录 专栏导读模块划分日志等级模块日志消息模块日志消息格式化模块日志消息落地模块日志器模块日志器管理模块异步线程模块 模块关系图 专栏导读 🌸作者简介:花想云 ,在读本科生一枚,C/C领域新星创作者,新星计划导…...
计算机专业毕业设计项目推荐02-个人医疗系统(Java+原生Js+Mysql)
个人医疗系统(Java原生JsMysql) **介绍****系统总体开发情况-功能模块****各部分模块实现** 介绍 本系列(后期可能博主会统一为专栏)博文献给即将毕业的计算机专业同学们,因为博主自身本科和硕士也是科班出生,所以也比较了解计算机专业的毕业设计流程以…...
Nginx__高级进阶篇之LNMP动态网站环境部署
动态网站和LNMP(LinuxNginxMySQLPHP)都是用于建立和运行 web 应用程序的技术。 动态网站是通过服务器端脚本语言(如 PHP、Python、Ruby等)动态生成网页内容的网站。通过这种方式,动态网站可以根据用户的不同请求生成不…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
