当前位置: 首页 > news >正文

手写实现LRN局部响应归一化算子

1、重写算子的需求

芯片推理过程中遇到很多算子计算结果不对的情况,原因是封装的算子会在某些特殊情况下计算超限,比如输入shape特别大或者数值特别大时,LRN算子计算会出现NAN值,所以需要重写算子。先对输入数据做一个预处理,计算后再在合适的地方转换回去。

2、lrn算子的原理

LRN全称是local response normalization,局部响应归一化,想了解原理的点这个AlexNet原论文。

官方API伪代码如下:

sqr_sum[a, b, c, d] = sum(input[a,b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias +alpha * sqr_sum) ** beta

在alexnet的原论文中,输入为 [batch_size, 224, 224, 96],这里224×224是图片的大小,经过第一次卷积再经过ReLU,就是LRN函数的输入。

注意上面API说明里的sum函数,意思就是,可能解释起来比较拗口,针对batch里每一个图的后3维向量,[224, 224, d - depth_radius : d + depth_radius + 1],对它按照半径 depth_radius求每个图里的每个像素的平方,再把这2× depth_radius+1个平方过后的图片加起来,就得到了这个batch的sqr_sum。

3、手写实现lrn算子

下面参考原论文和pytorch源码,实现自己手写的lrn算子,其中avg_pool3d就是实现了按照半径 depth_radius求每个图里的每个像素的平方:

def custom_lrn(input_tensor, N=5, alpha=1e-4, beta=0.75):x_sq = torch.square(input_tensor).unsqueeze(1)sizes = input_tensor.size()x_reshape = x_sq.view(sizes[0], 1, sizes[1], sizes[2], -1)x_pad = torch.nn.functional.pad(x_reshape, (0,0,0,0,2,2))x_pool3d = torch.nn.functional.avg_pool3d(x_pad, (N, 1, 1),stride=1).squeeze(1)x_squeeze = x_pool3d.view(sizes)x_scale = torch.mul(x_squeeze, alpha) + (1.0)x_scale_pow = torch.pow(x_scale, beta)out = input_tensor / x_scale_powreturn out

测试一下和pytorch实现的官方API的结果情况:

import torch
import numpy as np
inputs = torch.randn(1, 64, 56, 56, dtype=torch.float32)*20
SEED = 1
def set_seed(seed=1):np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed_all(seed)
set_seed(SEED)def custom_lrn(input_tensor, N=5, alpha=1e-4, beta=0.75):x_sq = torch.square(input_tensor).unsqueeze(1)sizes = input_tensor.size()x_reshape = x_sq.view(sizes[0], 1, sizes[1], sizes[2], -1)x_pad = torch.nn.functional.pad(x_reshape, (0,0,0,0,2,2))x_pool3d = torch.nn.functional.avg_pool3d(x_pad, (N, 1, 1),stride=1).squeeze(1)x_squeeze = x_pool3d.view(sizes)x_scale = torch.mul(x_squeeze, alpha) + (1.0)x_scale_pow = torch.pow(x_scale, beta)out = input_tensor / x_scale_powreturn outlrn2 = torch.nn.functional.local_response_norm(inputs, size=5)# print(custom_lrn(inputs))
# print(lrn2)
print('custom_lrn与pytorch官方的lrn算子是否相等:',torch.allclose(custom_lrn(inputs), lrn2))

测试输出结果完全一致,说明此算子与官方实现的算子是一致的。

>> custom_lrn与pytorch官方的lrn算子是否相等:True

相关文章:

手写实现LRN局部响应归一化算子

1、重写算子的需求 芯片推理过程中遇到很多算子计算结果不对的情况,原因是封装的算子会在某些特殊情况下计算超限,比如输入shape特别大或者数值特别大时,LRN算子计算会出现NAN值,所以需要重写算子。先对输入数据做一个预处理&…...

朗思科技数字员工通过统信桌面操作系统兼容性互认认证

近日,朗思科技数字员工与统信桌面操作系统V20进行了兼容互认,针对上述产品的功能、兼容性方面,通过共同严格测试表明——朗思科技数字员工在统信桌面操作系统 V20上整体运行稳定,满足功能及兼容性测试要求。 北京朗思智能科技有限…...

十六、Webpack常见的插件和模式

一、认识插件Plugin Webpack的另一个核心是Plugin,官方有这样一段对Plugin的描述: While loaders are used to transform certain types of modules, plugins can be leveraged to perform a wider range of tasks like bundle optimization, asset m…...

ChatGPT新增超强插件:文本直接生成视频、海报,支持自定义修改!

全球著名在线设计平台Canva,在ChatGPT Plus(GPT-4)上推出了插件功能,用户通过文本提示,几秒钟就能生成演示文稿、PPT插图、电子书封面、宴会邀请函等各种精美设计海报,同时支持生成视频。 该插件最强大的功…...

亚像素边缘提取的例子

求帮忙下载: 1.http://download.csdn.net/detail/pkma75/925394 pkma75 资源积分:1分 备注:pdf格式,用曲线拟合的方法计算亚像素,编程易实现,具有较强的实用价值 2.http://download.csdn.net/detail/kua…...

Wayland:推动Linux桌面进入下一代图形显示时代

文章首发地址 Wayland是Linux系统下的一种图形显示协议,旨在替代X Window System(X11)作为Linux桌面环境的图形显示服务。下面是对Wayland的详细解释: 背景: 传统的Linux桌面环境使用X Window System(X11&…...

mysql外键(foreign key)

简介 MySQL的外键约束用来在两个表数据之间建立链接,其中一张表的一个字段被另一张表中对应的字段约束。也就是说,设置外键约束至少要有两种表,被约束的表叫做从表(子表),另一张叫做主表(父表&…...

内网穿透——Windows搭建服务器

文章目录 1.前言2. Emby网站搭建2.1. Emby下载和安装2.2 Emby网页测试 3. 本地网页发布3.1 注册并安装cpolar内网穿透3.2 Cpolar云端设置3.3 Cpolar内网穿透本地设置 4.公网访问测试5.结语 1.前言 在现代五花八门的网络应用场景中,观看视频绝对是主力应用场景之一&…...

UE5.1 + Android 环境搭建

官方文档:一定一定一定要参照官方文档,因UE不同版本对应的环境搭建并不完全一致。 准备工作 通过EpicGameLaunch下载Android目标平台。 必须安装jdk1.8并配置环境变量,UE5.1不要使用最新的jdk20;下载地址 安装 Android Studio …...

华为python面试题目

华为Python常见的面试问题包括: Python是如何被解释的?什么是PEP8?Python是怎样管理内存的?什么是Python装饰器?Python提供哪些内置类型?Python中的异常处理是怎样的?什么是Python的上下文管理器?Python中的列表推导式是什么?Python中的生成器是什么?什么是Python的装…...

IP代理安全吗?如何防止IP被限制访问?

你是否遇到过可以正常上网,但访问某个网站却被禁止?注册某个网站账号,却被封号?那都是因为IP出现问题!您的IP地址透露很多关于您的信息,包括您的位置和互联网活动。 在本文中,我们将一起了解IP地…...

使用 gst-template 创建自己的 gstreamer 插件

系列文章目录 创建 gstreamer 插件的几种方式 使用 gst-template 创建自己的 gstreamer 插件 使用 gst-plugins-bad 里面的 gst-element-maker 工具创建gstreamer 插件 文章目录 系列文章目录前言一、如何获取 gst-template 仓库代码二、gst-template 相关的软件依赖1. 根据自…...

nginx反向代理,用户访问服务器1的80端口,请求转发至服务器2,3的8882端口

两台应用服务器,一台nginx,用户访问nginx服务器80端口,将请求转发至服务器2和服务器3的8882端口。 1、修改nginx配置文件 upstream backend {server 10.60.16.187:8882;server 10.60.16.188:8882;}server {listen 80;server_name 10.6…...

Python学习笔记:导入txt、xlsx文件并做简单函数处理

1.txt文件 1.1路径 file_path "E:\Python Project\temp.txt" with open(file_path) as f:content1 f.read() 导入文件时,如果直接放文件绝对路径上去会报错,这是因为\P是转义字符 所以在绝对路径前面加r可以避免将引号内的内容识别成转义…...

uniapp 轮播列表左右滑动,滑动到中间放大

html <!-- 轮播 --><view class"heade"><swiper class"swiper" display-multiple-items3 circulartrue previous-margin1rpxnext-margin1rpx current0 change"swiperChange" ><block v-for"(item,index) in list"…...

5. 自动求导

5.1 向量链式法则 ① 例子1是一个线性回归的例子&#xff0c;如下图所示。 5.2 自动求导 5.3 计算图 5.4 两种模型 ① b是之前计算的结果&#xff0c;是一个已知的值。 5.5 复杂度 5.6 自动求导 import torch x torch.arange(4.0) x 结果&#xff1a; ② 在外面计算y关于x的…...

【IEEE会议】 第三届智能通信与计算国际学术会议(ICC 2023)

第三届智能通信与计算国际学术会议 2023 3rd International Conference on Intelligent Communications and Computing 第三届智能通信与计算国际学术会议&#xff08;ICC 2023&#xff09;定于2023年11月24-26日在中国南昌隆重举行。会议旨在为从事智能通信与计算研究的专家学…...

巨人互动|Facebook海外户Facebook风控规则有什么

Facebook是全球最大的社交媒体平台之一&#xff0c;每天有数十亿的用户在其上发布、分享和交流各种内容。为了维护平台的安全性和用户体验&#xff0c;Facebook制定了严格的风控规则来监测和处理违规行为。下面小编讲讲Facebook风控规则。 巨人互动|Google海外户&Google Ad…...

pip命令来查看当前激活的虚拟环境

要查看已安装的虚拟环境&#xff0c;您可以使用以下命令&#xff1a; pip freeze该命令将列出所有已安装的包及其版本信息。在虚拟环境中运行时&#xff0c;它将仅显示该虚拟环境中安装的包。 这将列出所有已创建的虚拟环境以及当前激活的环境。 python -m venv list...

STL stack 和 queue

文章目录 一、stack 类和 queue 类的模拟实现 stack 只允许在一端进行插入删除&#xff0c;是一个后进先出(LIFO)的结构&#xff0c;可以存储任意类型 queue 只允许在一端进行插入&#xff0c;另一端进行删除&#xff0c;是一个先进先出(FIFO)的结构&#xff0c;可以存储任意类…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

算法—栈系列

一&#xff1a;删除字符串中的所有相邻重复项 class Solution { public:string removeDuplicates(string s) {stack<char> st;for(int i 0; i < s.size(); i){char target s[i];if(!st.empty() && target st.top())st.pop();elsest.push(s[i]);}string ret…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...